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1 Analysis of the the SS solution for the flat ge-
ometry

We wish here to derive an approximate steady state solution near the ex-
trema of the shape (peak or minimum), in order to shed light on the underly-
ing mechanisms responsible for the observed steady state shapes (Figs.2a,c).
In the steady state, the sum of fluxes of membrane-bound protein complexes
(membrane proteins) is equal to zero. In particular, we found that in our
calculations the dominant fluxes are the flux due to the membrane intrinsic
curvature, Jcurv, the dispersion flux, Jdisp and the first term in the aggrega-
tion flux Jagg. Equating these terms gives
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The result is
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where Γ = (1− 2J/κH̄2). By integrating both sides of Eq.S2, we get

n(s) = n(0) +
H −H(0)

ΓH̄
. (S3)

The function representing the membrane shape near the peak (or mini-
mum) region at the steady state is approximated by a fourth order polyno-
mial. Due to symmetry around the peak the odd orders of the polynomial
are zero. We use the proportionality found in Eq.S3 to obtain the distribu-
tion of membrane proteins, n(x), from the shape function, h(x)

h(x) = h0 + fx2 + gx4 (S4)
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2f

H̄
+

12g

H̄
x2 (S5)

where x is the length along the x axis, and h0, f, g are parameters of the
expansion.

We next use this shape and protein distributions in the calculation of
the total force Ftot acting on the membrane (Eqs.4-7). Using the Monge
representation the curvature restoring force is of the form
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At steady state we look for a solution for h0, f, g that obeys the vanishing
of the total force, up to fourth order terms. To simplify matters we looked
at the two separate cases of α > 0, Aactin = 0, and α = 0, Aactin > 0, and
we kept the equations for h0, f, g up to second order.

1.1 Adhesion-driven peak

When α > 0, Aactin = 0, we obtain that
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and

gα =
H̄γ

72(κn0H̄2 − α+ 2Jn0)
(S8)

We find that these solutions behave as: f < 0 and g > 0, for strong
adhesion (large α), which corresponds to a peak in the membrane shape
and a similar peak in the membrane protein distribution (Eqs.S4,S5 and
H̄ < 0). This is similar to the steady-state shape seen in the numerical
simulations (Fig.2a). We see in Eqs.S7,S8 that the adhesion (α) competes
with the elastic stiffness of the membrane that is induced by the membrane
proteins (κ and J terms).

1.2 Actin-driven minimum

In a similar fashion the analytic derivation was performed for the case of
α = 0, Aactin > 0. The solutions we find are

factin =
2
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Aactin + H̄σ

)
+ H̄3n2
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0
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(S9)

and

gactin =
H̄γ

72H̄κn0 − 144Jn0
(S10)

We find that these solutions behave as: f > 0 and g < 0, for strong actin
protrusive force (large Aactin), which corresponds to a dip in the membrane
shape and a similar dip in the membrane protein distribution (Eqs.S4,S5
and H̄ < 0). This is similar to the steady-state shape seen in the numerical
simulations (Fig.2c). We see in Eqs.S9,S10 that the actin force (Aactin)
competes with the membrane tension (σ) and the elastic stiffness of the
membrane that is induced by the membrane proteins (κ and J terms).
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2 Effect of the membrane curvature along the cell
thickness

As shown in Fig.1b, a flat adhering cell has a relatively high membrane
curvature along its thickness, of the order of |H0| ∼ 1µm−1. The curvature
term appearing in the free energy (Eq.1) which includes this contribution,
is

Fcurv =

∫ (1
2
κ((H0 +H)− H̄n)2

)
ds, (S11)

Note that H0 < 0 representing a convex shape.
When we do the variation on this energy, we find that the forces acting

on the membrane are as given in Eqs.4-7, simply that the parameters get
renormalized as: (i) The membrane tension is increased; σ → σ + κH2

0 ,
(ii) there is an increase in the effective adhesion of the membrane to the
substrate, since the convex membrane protein (H̄ < 0) help stabilize the
curvature in the thickness direction; α → α+ H̄H0κ.

Finally, there is an additional constant force due to this curvature in the
thickness direction, which arises from the membrane tension terms, since
there is now a constant term in the mean curvature H+H0. This force that
acts along the outer cell contour, points inwards, and is balanced in our
model by the bulk modulus term in Eq.2. We can therefore simply absorb
this additional force inside the constant parameter Starget for the equilibrium
area of the cell.

Since the effective membrane tension and the adhesion strength are free
parameters, these renormalizations do not alter qualitatively our results.

3 Effect of local restoring force on the actin poly-
merization rate

We wish to study the effect of making the polymerization rate Aactin locally
dependent on the restoring force applied by the membrane. We use the
phenomenological relation between polymerization rate and applied force
that is used in [1], which is

Aactin = Aactin,0

(
1−

(
Frestn0

Fsn

)w)
(S12)

where Frest is the sum of the membrane restoring forces (Eqs.4-7), Aactin,0 is
the bare polymerization rate without an opposing force, and w is some power
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larger than 2. Note that the polymerization rate is related to the load force
per filament, so is dependent on the local density n. If the membrane force
is pointing outwards, it does not oppose the actin polymerization, which
then attains its bare value Aactin,0.

In Fig.S1 we plot the membrane shape and membrane protein distri-
bution for the case of actin force, with and without the local force depen-
dence. We chose the parameters: w = 4, Fs = 0.3 · 10−3grµm−1sec−2 and
Aactin = 0.015grµm−1sec−2. We find that there is now a reduced rate of
actin polymerization where the membrane is convex due to the stronger
membrane restoring force, so that the positive feedback between the mem-
brane shape and membrane protein distribution is weakened. On the other
hand this is slightly, but not fully, compensated by the fact that exactly
there the membrane load is being shared by more filaments (Eq. S12). The
coalescence of the protrusions is less effective and therefore their number
stays larger for longer times.

Figure S1: Effects of local restoring force on rate of actin polymer-
ization. (a) Numerical simulations of the evolution of the membrane shape
and membrane protein distribution, for the flat geometry, driven by actin
alone. Black lines give the results without the effects of the local force, while
red lines are including the effects of the local membrane restoring force. (b)
The number of protrusions as a function of time for the two calculations
shown in (a), with the same color code.

4 Movie legends

Supporting Movie 1 This is the simulation for the round cell driven
purely by adhesion (Fig.2b). The top panel shows the membrane shape,
while the bottom panel gives the concentration distribution of the membrane
protein.

Supporting Movie 2 This is the simulation for the round cell driven
purely by actin polymerization (Fig.2d). The top panel shows the membrane
shape, while the bottom panel gives the concentration distribution of the
membrane protein.

Supporting Movie 3 This is the simulation for the round cell driven
purely by actin polymerization, with a polarized initial distribution of the
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membrane proteins (Fig.2e). The top panel shows the membrane shape,
while the bottom panel gives the concentration distribution of the membrane
protein.
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