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Text S1 

A. Derivation of the adaptive threshold model. 

We recapitulate results from our previous study1 and complement it with a derivation of the 
approximation of the steady-state threshold function. 

We consider a membrane with only leak and Na channels, and we assume that Na activation is 
instantaneous (activation time constant is typically a fraction of ms2). In the standard Hodgkin-
Huxley formalism, the membrane equation is then: 

𝐶
𝑑𝑉
𝑑𝑡

= 𝑔𝑁𝑎𝑃𝑎∞(𝑉)ℎ(𝐸𝑁𝑎 − 𝑉) + 𝑔𝐿(𝐸𝐿 − 𝑉) + 𝐼 

𝑑ℎ
𝑑𝑡

=
ℎ∞(𝑉) − ℎ
𝜏ℎ(𝑉)

 

where V is the membrane potential, h is the Na inactivation variable, I is the input current, C is 
the membrane capacitance, 𝑔𝐿 (resp. 𝐸𝐿) is the leak conductance (resp. the reversal potential), 
𝑔𝑁𝑎 (resp. 𝐸𝑁𝑎) is the maximal conductance (resp. reversal potential) of sodium channels, 𝑃𝑎∞ 
(resp. ℎ∞) is the Na steady-state activation (resp. inactivation) function, and 𝜏ℎ is the Na 
inactivation time constant. 

The steady-state activation curve 𝑃𝑎∞(𝑉) can be empirically described as a Boltzmann function: 

𝑃𝑎∞(𝑉) =
1

1 + exp �−𝑉 − 𝑉𝑎
𝑘𝑎

�
 

where 𝑉𝑎 is the half-activation voltage (Pa∞(𝑉𝑎) = 1/2) and 𝑘𝑎 the activation slope factor 
(Pa∞

′(𝑉𝑎) = 1/(4𝑘𝑎)). Action potentials are initiated well below Va (about -30 mV3), so that 
e−(𝑉−𝑉𝑎)/𝑘𝑎 ≫ 1 except during the spike. Similarly, ENa is very high (about 55 mV), so that 
𝐸𝑁𝑎 − 𝑉 is not very variable below threshold. We make the approximation 𝐸𝑁𝑎 − 𝑉 ≈ 𝐸𝑁𝑎 − 𝑉𝑎 
and we obtain the following expression for the Na current: 

𝐼𝑁𝑎 = 𝑔𝑁𝑎ℎ(𝐸𝑁𝑎 − 𝑉𝑎)𝑒(𝑉−𝑉𝑎)/𝑘𝑎 = 𝑔𝐿ℎ𝑘𝑎𝑒(𝑉−𝑉𝑇)/𝑘𝑎  

where 𝑉𝑇 = 𝑉𝑎 − 𝑘𝑎 log 𝑔𝑁𝑎
𝑔𝐿

𝐸𝑁𝑎−𝑉𝑎
𝑘𝑎

. This approximation is meaningful for spike initiation but not 

for spike shape. With a reset (ignoring inactivation and other ionic channels), we obtain the 
exponential integrate-and-fire model4, which predicts the response of cortical neurons to 
somatic injection with good accuracy, in terms of spike timings5-7. In this model, 𝑉𝑇 is the voltage 
threshold for constant input currents I and ka (originally denoted ∆𝑇) is the slope factor, which 
measures the sharpness of spikes: in the limit ka → 0 mV, the model becomes a standard 
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integrate-and-fire model with threshold VT (note that in a multicompartmental model, spike 
sharpness is no longer related to ka). The resulting approximated membrane equation is thus: 

𝐶
𝑑𝑉
𝑑𝑡

= 𝑔𝐿ℎ𝑘𝑎𝑒(𝑉−𝑉𝑇)/𝑘𝑎 + 𝑔𝐿(𝐸𝐿 − 𝑉) + 𝐼 

Finally, the inactivation variable h can be inserted in the exponential function: 

𝐶
𝑑𝑉
𝑑𝑡

= 𝑔𝐿𝑘𝑎𝑒
𝑉−𝜃
𝑘𝑎 + 𝑔𝐿(𝐸𝐿 − 𝑉) + 𝐼 

where  
𝜃 = 𝑉𝑇 − 𝑘𝑎 log ℎ  

is the spike threshold (voltage threshold if all other variables are constant, i.e., it is such that 
F’(𝜃)=0, where F is the current-voltage function). We refer to this latter formula as the threshold 
equation. The steady-state value of the threshold is thus 𝜃∞(𝑉) =  𝑉𝑇 − 𝑘𝑎 log ℎ∞(𝑉). 

 

Dynamic equation for the threshold 

We differentiate the threshold equation with respect to time: 

𝑑𝜃
𝑑𝑡

= −𝑘𝑎
1
ℎ

 
𝑑ℎ
𝑑𝑡

== −𝑘𝑎
1
ℎ
ℎ∞(𝑉) − ℎ
𝜏ℎ(𝑉)

 

We now express h as a function of 𝜃 using the inverse relationships: ℎ = 𝑒(𝜃−𝑉𝑇)/𝑘𝑎  and 
ℎ∞(𝑉) = 𝑒(𝜃∞−𝑉𝑇)/𝑘𝑎: 

𝜏ℎ(𝑉)
𝑑𝜃
𝑑𝑡

= 𝑘𝑎(1 − e
𝜃−𝜃∞(𝑉)

𝑘𝑎 ) 

This differential equation is the most accurate version of the adaptive threshold model. If the 
threshold remains close to its steady-state value (|𝜃 − 𝜃∞(𝑉)| ≪ 𝑘𝑎), we can approximate the 
equation by: 

𝜏𝜃(𝑉)
𝑑𝜃
𝑑𝑡

= 𝜃∞(𝑉) − 𝜃 

with 𝜏𝜃 = 𝜏ℎ and 𝜃∞(𝑉) =  𝑉𝑇 − 𝑘𝑎 log ℎ∞(𝑉). 

 

Linearization of the steady-state threshold 

The inactivation function is a Boltzmann function with parameters Vi (half-inactivation voltage) 
and ki (inactivation slope factor). For low voltages (𝑉 → −∞), ℎ∞(𝑉) tends to 1 (channels are not 

inactivated), therefore 𝜃∞(𝑉) tends to VT. For high voltages, ℎ∞(𝑉)~𝑒
−
𝑉−𝑉𝑖
𝑘𝑖 , so that 𝜃∞ (𝑉) ≈

𝑘𝑎
𝑘𝑖

(𝑉 − 𝑉𝑖) + 𝑉𝑇 . This defines two linear asymptotes of the graph of 𝜃∞, which intersect at (Vi, 

VT). Thus, 𝜃∞ can be approximated by the following piecewise linear function: 
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𝜃∞(𝑉) = 𝑉𝑇 , if 𝑉 < 𝑉𝑖  
𝜃∞ (𝑉) = 𝑘𝑎

𝑘𝑖
(𝑉 − 𝑉𝑖) + 𝑉𝑇 , otherwise 

Thus, neglecting the voltage-dependence of the inactivation time constant, we obtain the 
following adaptive threshold model: 

 

𝜏𝜃
𝑑𝜃
𝑑𝑡

= 𝑉𝑇 − 𝑉  if V<Vi  

 𝑘𝑎/𝑘𝑖(𝑉 − 𝑉𝑖) + 𝑉𝑇 − 𝑉 otherwise  
 

Effect of output spikes on threshold 

The effect of previous spikes on spike threshold, which is presumably due to slow Na 
inactivation8, can be understood by looking at how an action potential acts on the inactivation 
variable h. Typical equilibrium curves for Na inactivation ℎ∞(𝑉) are Boltzmann functions with 
half-activation values 𝑉𝑖 ≈ −60 mV and Boltzmann coefficients 𝑘𝑖 ≈ 6 mV3, so that ℎ∞(𝑉) is 
close to 0 after spike initiation. Thus during the action potential, the inactivation variable relaxes 
to 0 according to the following equation: 

𝜏ℎ(𝑉)
𝑑ℎ
𝑑𝑡

= −ℎ 

If we note 𝜏ℎ∗  the average value of the time constant 𝜏ℎ(𝑉) during the action potential and 𝛿𝑡 the 
spike duration (typically, a few ms), then the effect of an action potential on h is a partial reset: 
ℎ → ℎ𝑒−𝛿𝑡/𝜏ℎ

∗
, which translates for the threshold into a shift: 𝜃 → 𝜃 + (𝛿𝑡/𝜏ℎ∗)𝑘𝑎 . This effect was 

recently demonstrated in vitro5 and explains in vivo observations where the threshold was found 
to be inversely correlated with the previous interspike interval8. 
 

B. Effective postsynaptic potentials (PSPs). 

We consider an exponentially decaying PSP with time constant 𝜏, modeling the effect of a fast 
excitatory synapse: 𝑃𝑆𝑃(𝑡) = 𝑒−𝑡/𝜏 (the PSP is normalized; 𝜏 corresponds to the membrane time 
constant). The threshold PSP is defined as the increase in threshold due to this PSP. With the 
adaptive threshold model and when V>Vi, the threshold is a low-pass filtered version of the 
membrane potential, i.e., 𝐿 ∗ 𝑃𝑆𝑃(𝑡) = 𝑎(𝑒−𝑡/𝜏 − 𝑒−𝑡/𝜏𝜃), where 

𝑎 =
𝜏

𝜏 − 𝜏𝜃
𝑘𝑎
𝑘𝑖

 

If the steady-state threshold 𝜃∞ (𝑉) is not approximated by a piecewise linear function, then (for 
small PSPs), ka/ki should be replaced by 𝑑𝜃∞ /dV (increase rate of the threshold with 
depolarization). 

The effective PSP is then 𝑃𝑆𝑃(𝑡) − 𝐿 ∗ 𝑃𝑆𝑃(𝑡) = 𝑎𝑒−𝑡/𝜏𝜃 + (1 − 𝑎)𝑒−𝑡/𝜏: it has the same 
maximum height as the PSP (PSP(0)=1), but first decays with the faster time constant 𝜏𝜃 , then 
with the slower time constant 𝜏 (assuming 𝜏𝜃 < 𝜏). In some cases the effective PSP can change 

sign. The zero crossing time can be calculated by solving the equation 𝑎𝑒−𝑡/𝜏𝜃 + (1 − 𝑎)𝑒−
𝑡
𝜏 = 0, 

which gives: 
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𝑡∗ = −
𝜏𝜏𝜃
𝜏 − 𝜏𝜃

log (1 −
(𝜏 − 𝜏𝜃)𝑘𝑖

𝜏𝑘𝑎
) 

This is defined when the following condition is met: 

𝜏𝜃 > 𝜏 �1 − �
𝑘𝑖
𝑘𝑎
�
−1

� 

When this condition is not met, the effective PSP has constant sign (i.e. positive for an excitatory 
PSP, negative for an inhibitory PSP). 

 

C. Geometrical analysis of threshold dynamics. 

The excitability model is a two-dimensional dynamical system for the variables V and h. A 
classical approach is to look at trajectories in the (V,h) phase plane. Here we show that this 
approach yields qualitatively similar results as the simplified approach we have presented. 

We consider the excitability model and assume that the parameter values are such that the 
system has three equilibria, which are geometrically represented by the intersection of the two 
nullclines (𝑑𝑉

𝑑𝑡
= 0 and 𝑑ℎ

𝑑𝑡
= 0, Fig. S2A). The direction of trajectories is given by the signs of 

dV/dt and dh/dt. From the equations, we find:  𝑑ℎ
𝑑𝑡

> 0 below the h-nullcline, and <0 above; 
𝑑𝑉
𝑑𝑡

> 0 above the V-nullcline, and <0 below. It follows that all trajectories diverge from the 
middle equilibrium, except two trajectories, called separatrices (Fig. S2A, green). Thus, this 
equilibrium is a saddle point and the separatrices are a threshold line11: every initial condition 
on its left leads to a subthreshold trajectory; every initial condition on its right leads to a 
suprathreshold trajectory. Because of the signs of dh/dt and dV/dt, V is a decreasing function of 
h along these separatrices. In other words, the voltage threshold is a decreasing function of h. 

Let us consider now that the system is stimulated by a pulse input. If this pulse is short and large 
(ideally, a Dirac), the trajectory of the system will be almost horizontal in (V,h) (Fig. S2B, dashed 
blue). Otherwise, the trajectory of the system will lie below this horizontal line (Fig. S2B, solid 
blue). As the input gets slower, the trajectory shifts downward and, because of the inclination of 
the separatrices, the voltage at threshold increases. This results in a negative correlation 
between depolarization slope and threshold, as expected. 

For fluctuating inputs, the approach based on the separatrix turns out to be quantitatively less 
accurate that the threshold equation, as is shown in Fig. S3. 
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Figure S2. Threshold dynamics in the (𝑉, ℎ) phase plane. A, The two nullclines of the excitability 
model (black curves, dV/dt=0 and dh/dt=0) intersect at the resting point (black dot), which is 
stable, and at an unstable point (white circle). Spikes are triggered when trajectories cross the 
separatrix (green curve). B, Sample trajectories with pulse input currents: because of the 
orientation of the separatrix, spikes are triggered at lower voltages with fast depolarization 
(dashed) than with slow depolarization (solid). 
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Figure S3. Trajectories in the (V,h) plane with fluctuating inputs (mean µ =0 mV, standard 
deviation 𝜎 = 15 𝑚𝑉, autocorrelation time constant 𝜏𝐼 = 2 𝑚𝑠). In this case, our theoretical 
threshold prediction (red, using the threshold equation) is more accurate than the separatrix 
(black dots are spike onsets, measured with the empirical first derivative method, and the 
dashed lines represent the first derivative criterion in the model equations, with I = µ ± 2σ; the 
input current appears in the membrane equation and varies at spike initiation). 
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