
Supplementary Material S1: Conditions for a Constant Dopaminergic

Baseline Firing Rate

It has been found that midbrain dopamine neurons react to a reward or reward predicting stimulus. As long as nothing

unpredictable happens, the neurons fire with a constant baseline activity [1]. To incorporate this finding into our model, we

need to find conditions such that the dopaminergic neurons fire with a constant baseline activity, independent of the value

of the agent’s current state, except during phasic activation following a state transition. Here, we derive two relationships

that enable the network to fulfill this requirement: firstly between the number of neurons in the ventral pallidum NVP and

the number of neurons in the striatum NSTR, secondly between the weights of the synapses that connect the striatum to the

dopaminergic neurons wSTR
DA and those that connect the ventral pallidum to the dopaminergic neurons wVP

DA.

The firing rate λ of an integrate-and-fire neuron can be calculated from the first passage time of the membrane potential

across the threshold (see [2] for a review). For leaky integrate-and-fire neuron models, provided the distribution of the free

membrane potential is sufficiently close to a Gaussian, the mean µ and the variance σ2 of this distribution determine the first

passage time and therefore also the firing rate:

λ =f
(
µ, σ2

)

If an agent is stationary in a state with no associated external reward, each dopamine neuron integrates inputs from three

sources: NSTR striatal neurons, each firing at λSTR with mean synaptic weight wSTR
DA , NVP neurons of the ventral pallidum,

each firing at λVP with mean synaptic weight wVP
DA, and the background noise. This last term is made up of an excitatory

and an inhibitory Poissonian input with firing rates λbg,E = λbg,I = λbg and synaptic strengths wbg,E = −wbg,I. Under the

assumption that all input spike trains are uncorrelated, stationary Poisson processes, the mean membrane potential µ and the

variance σ2 can be calculated according to shot noise theory [3]:

µ = NSTRλSTR
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where h(w, t) is the post-synaptic potential. For α-shaped postsynaptic currents we have:

h(w, t) =


ew
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− 1
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)−2 ([
1
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− 1
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]
te−t/τα − e−t/τα + e−t/τm

)
t ≥ 0

0 t < 0

Therefore, the mean membrane potential and variance of a dopaminergic neuron are given by:
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NSTRλSTRw

STR
DA +NVPλVPw

VP
DA

)
F1
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(
wVP

DA

)2
+ 2λbgw

2
bg

)
F2
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We assume a linear relationship between the firing rates of the neurons in the ventral pallidum and striatal populations:

λVP = −aλSTR + b

Therefore the mean membrane potential and variance of a dopaminergic neuron whilst the agent remains in an unrewarded

state are given by:

µ =
((
wSTR

DA NSTR − awVP
DANVP

)
λSTR + bwVP

DANVP

)
F1
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2
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)
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This results in the following conditions under which the dopaminergic firing rate is independent of the striatal firing rate λSTR

and hence of the value of the agent’s current state:

wVP
DA =

1

a
wSTR

DA
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NVP(
wVP

DA

)2
=
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DA

)2 NSTR

NVP

These conditions are fulfilled for
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NSTR = aNVP

and

wVP
DA = wSTR

DA .

For the parameters used in our simulations, we have verified that the linear relationship between the firing rates of the neurons

in the ventral pallidum and striatal populations holds with a = 1 resulting in a constant dopaminergic rate.

In such a network, when the agent moves from one state si to another state si+1 the mean membrane potential and

variance are given by:

µ =
(
−wSTR

DA NSTR [λSTR (si+1)− λSTR (si)] + bwVP
DANVP

)
F1
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2
bg

)
F2,

where λSTR (sx) is the striatal firing rate when the agent is in state sx. Thus, the mean membrane potential as well as the

variance depend on the undiscounted difference between the values of two successive states as encoded by the striatal firing

rate. If the network is not tuned to result in a constant tonic dopaminergic rate, the mean membrane potential and variance

can be written in the following way:

µ =

(
− [γλSTR (si+1)− λSTR (si)] +

bwVP
DANVP

wSTR
DA NSTR

)
F1
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]
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2
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with γ =
(
awVP

DANVP

)
/
(
wSTR

DA NSTR

)
, i.e. they depend on the discounted difference between two states. For 0 ≤ γ ≤ 1 the

phasic dopaminergic signal could therefore be used to drive temporal-difference learning in the cortico-striatal synapses on

the basis of a simplified synaptic plasticity dynamics that does not compensate for a missing γ-factor (eq. 7 in Sec. 2.3 of

the main text).
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