
Supplementary Material S2: Mapping Parameters

1 Equivalence between the weight dynamics and the value function update

The continuous cortico-striatal synaptic plasticity dynamics

ẇij(t) = AΛj(t)εj(t) {(D(t)−Db)−GΛi(t)}

was derived in a top-down fashion to have the same qualitative properties as the discrete-time value function update. In this

section, we show that the continuous time dynamics is equivalent to the discrete-time update piecewise in ∆w, where ∆w is

the difference between the mean cortico-striatal synaptic weights of two successive states.

We consider the mean dynamics of the synaptic weights between the population of cortical neurons representing a state

sn and the population representing the striatum:

ẇ (sn, t) = Aλsn(t)εsn(t) {(λd(t)−Db)−GλSTR(t)} (S2-1)

where λsn(t) is the mean pre-synaptic activity trace, εsn(t) the mean pre-synaptic efficacy trace, λd(t) the mean dopaminergic

activity trace and λSTR(t) the mean post-synaptic activity trace.

The mean of an activity trace λx with time constant τ can be obtained by averaging over the dynamics of the activity

trace Λx given by Eq. (4) in the main text:

λ̇x(t) = −1

τ
(λx(t)− λ(t))

where λ(t) is the true firing rate approximated by the activity trace λx (t). The solution of this inhomogeneous differential

equation is

λx(t) = λx (t0) e−(t−t0)/τ − 1

τ

∫ t

t0

λ (t′) e−(t−t′)/τ dt′
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1 EQUIVALENCE BETWEEN THE WEIGHT DYNAMICS AND THE VALUE FUNCTION UPDATE

If λ(t) is constant for t > t0 we get:

λx(t) = λx (t0) e−(t−t0)/τ + λ
(
t+o
) (

1− e−(t−t0)/τ
)
. (S2-2)

For appropriately chosen time constants of the pre-synaptic efficacy and activity traces, the plasticity of the synapse is only

significant when the agent has recently exited state sn and negligible otherwise. Assuming the transition occurs at t = 0, the

net change in the mean synaptic weight of state sn is :

δw (sn) =

∫ τasp

0

ẇ (sn, t) dt =

∫ τph

0

ẇ (sn, t) dt+

∫ τasp

τph

ẇ (sn, t) dt (S2-3)

where τasp is the period for which the action neurons are suppressed so that they do not fire and τph is the duration of the

phasic activity after a state transition.

To calculate Eq. (S2-3) we need to determine expressions for λsn (t), εsn (t), λd (t) and λSTR (t). The rate of the state

neurons representing sn is λ(s) whilst the agent is in sn. When the agent leaves sn, the neurons are no longer strongly

stimulated by the environment and so the rate drops to approximately 0. Assuming a transition out of sn at t = 0, the mean

efficacy trace and the mean pre-synaptic activity trace are:

λsn(t) = λ(s)e−t/τs

εsn(t) = 1− e−t/τε

The dopaminergic rate λd (t) is simply the constant baseline activity Db, except during the phasic activity of duration τph.

The phasic firing rate λph after a transition from a state sn to a state sn+1 is a function of the weight difference of the two

corresponding states. We assume this firing rate to be constant for a particular state transition. For the sake of simplicity we

consider the case that the phasic activity starts at t = 0. From Eq. (S2-2) follows:

λd(t) =


Dbe

−t/τd +λph

(
1− e−t/τd

)
for t ∈ [0, τph]

λphe
−(t−τph)/τd +Db

(
1− e−(t−τph)/τd

)
for t ∈ [τph, τasp]

The post-synaptic activity λSTR (t) depends on the input from the currently active state, i.e. sn whilst the agent is in sn,

and sn+1 after the transition at t = 0. Therefore, for t ∈ [0, τasp] the mean post-synaptic activity trace is given by

λSTR(t) = λSTR (sn) e−t/τSTR + λSTR (sn+1)
(

1− e−t/τSTR

)
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1 EQUIVALENCE BETWEEN THE WEIGHT DYNAMICS AND THE VALUE FUNCTION UPDATE

The mean synaptic weight change is:

δw (sn) = Aλ(s) {λphT1 − C (λSTR (sn)T2 + λSTR (sn+1)T3) +DbT4} (S2-4)

with

T1 =

(
d̂

(
1

τs
+

1

τd

)
− d̂

(
1

τs
+

1

τd
+

1

τε

))
eτph/τd + τ̂

(
1

τs

)
− τ̂

(
1

τs
+

1

τε

)
− τ̂

(
1

τs
+

1

τd

)
+ τ̂

(
1

τs
+

1

τd
+

1

τε

)
T2 = k̂

(
1

τs
+

1

τSTR

)
− k̂

(
1

τs
+

1

τε
+

1

τSTR

)
T3 = k̂

(
1

τs

)
− k̂

(
1

τs
+

1

τε

)
− k̂

(
1

τs
+

1

τSTR

)
+ k̂

(
1

τs
+

1

τSTR
+

1

τε

)
T4 = τ̂

(
1

τs
+

1

τd

)
− τ̂

(
1

τs
+

1

τd
+

1

τε

)
+ d̂

(
1

τs

)
− d̂

(
1

τs
+

1

τε

)
− d̂

(
1

τs
+

1

τd

)
eτph/τd

+d̂

(
1

τs
+

1

τd
+

1

τε

)
eτph/τd − k̂

(
1

τs

)
+ k̂

(
1

τs
+

1

τε

)

and

τ̂(x) = 1/x
(
1− e−xτph

)
d̂(x) = 1/x

(
e−xτph − e−xτasp

)
k̂(x) = 1/x

(
1− e−xτasp

)
.

One major difference between the traditional TD error and the dopaminergic signal is that the dopaminergic firing rate

λph depends non-linearly on successive reward estimates, ∆w, whereas the TD error is a linear function of successive value

functions (see Fig. 4 in the main text). However, is is possible to approximate the non-linear function for a given reward

signal piecewise in ∆w by a linear function:

λph = md∆w + cd (S2-5)

To compare the synaptic weight change to the value function update we map the value function to the units of synaptic

weights:

V (s) = mV λSTR(s) + cV (S2-6)

λSTR(s) = mλw(s) + cλ . (S2-7)

The linear relationship Eq. (S2-7) is fulfilled for w ∈ [30, 100] pA with mλ = 0.43 Hz
pA and cλ = −3.93 Hz. Within a given

range of ∆w the synaptic weight change Eq. (S2-4) can be written with Eq. (S2-6) and Eq. (S2-7) as:
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∆w [pA] Ir[ pA] md [Hz·pA−1] cd [Hz]

> 10 0 18.72 −52.92
[−20, 10] 0 5.6 120.97

[−60,−20[ 0 0.47 29.5
≥ −10 600 27.4 967.08
< −10 600 13.34 831.27

Table S2-1: The dependence of the linear coefficients md and cd of equation Eq. (S2-5) on ∆w = w (sn+1) − w (sn) and

the reward amplitude Ir for the parameters chosen in our simulation.

δw (sn) =
1

mλmV
δV (sn)

with

δV (sn) = α (γV (sn+1)− V (sn) + κ)

and

α = α(md) = mλAλ(s) (mdT1/mλ +GT2)

γ = γ(md) =
mdT1/mλ −GT3

mdT1/mλ +GT2

κ = κ(md, cd) =
cdT1 +GcV (T2 + T3)/mV +DbT4

mdT1/(mλmV ) +GT2/mV
(S2-8)

Because md and cd are dependent on the range of ∆w and the direct current applied to the dopamine neurons Ir, the

weight update δw can be interpreted as a TD(0) learning value function update with self-adapting learning parameters and

a self-adapting offset that depend on the current weight change and reward.

The values of md and cd for the parameters chosen in our simulations for a direct current of Ir = 600 pA and Ir = 0 pA

are summarized in Table S2-1.

2 Policy mapping

The probability of choosing a certain action in a certain state is given by the probability that the actor neuron encoding

the action fires first in response to the input from the cortical neurons representing the state. This probability depends on

the mean strength of the synapses connecting the cortical ’state’ neurons to the actor neuron in comparison to the mean

strength of the synapses connecting the state neurons to the other competing actor neurons. A mapping of synaptic weights

to probabilities for a similar architecture was derived in [1]. To obtain the mapping, first spike time distributions are measured

as a function of synaptic weight and fitted with a gamma probability densitiy function f (t|κ, θ) = 1
θκΓ(κ) t

κ−1e−
t
θ , where Γ

is the gamma function. The probability that an actor neuron p with mean synaptic weights wp fires before an actor neuron
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3 DISCRETE-TIME SIMULATION

q with mean synaptic weights wq is given by:

P
(
tfsp < tfsq |wp, wq

)
=

∫ ∞
0

f (t|κ (wp) , θ (wp))

[
1− γ

(
t

θ (wq)
, κ (wq)

)]
dt.

Here, γ(t, κ) is the incomplete gamma function, with γ(t, κ) = 1
Γ(κ)

∫ t
0
e−ttκ−1dt.

The policy defined by the probabilities of the respective action neurons firing first is not identical to the Gibbs softmax

method used to select actions in the discrete-time algorithmic implementation (see introduction). However, the precise non-

linear function used to select actions is not critical; any selection mechanism that predominantly selects the most preferred

action but occasionally selects a less preferred action would be expected to generate a similar policy.

3 Discrete-time simulation

In order to have a reference for the learning performance of the neuronal network in the grid-world task, we implemented in

C++ a classical algorithmic discrete-time actor-critic TD(0) learning agent as described in the introduction. We mapped the

synaptic parameters to the discrete-time learning parameters such that they result in the same value function update in the

range ∆w ∈ [−20, 10] pA (see Sec. 1 for a derivation of this relationship). For the synaptic parameters used in our study,

this leads to learning parameters α = 0.4 and γ = 0.9. We adapted the algorithm such that a value function update is

only carried out if the chosen action leads to a state transition, in line with the neuronal dynamics. However, removing this

constraint does not result in an increased performance for the discrete-time algorithm (data not shown).

For certain ranges of ∆w the reward defined for the neuronal system, i.e. the direct current applied to the dopamine

neurons Ir, can also be mapped to the real-valued reward defined in the discrete-time TD(0) algorithm (see Sec. 1). This

mapping depends on the parameters mV and cV , which map the value function V to firing rates according to Eq. (S2-6).

These parameters have no neuronal correlates, so we determined the reward by performing a parameter scan over possible

values for mV and cV . For each parameter set we calculated the discrete-time reward according to the derived mapping for

∆w < −10 pA. We then let the discrete-time algorithmic TD(0) learning agent solve the grid-world task for that reward

and measured the resultant minimum and maximum equilibrium value functions across all states, Vmin = mins V (s) and

Vmax = maxs V (s). The minimum and maximum values of the value function for the neuronal implementation are given by

V (wmin) and V (wmax), where V (w) = mVmλw+mV cλ + cV (see Eq. (S2-6) and Eq. (S2-5)) and wmin = mins w(s) and

wmax = maxs w(s) are the minimum and maximum of w(s) over all states; where w(s) is the mean equilibrium cortico-striatal

synaptic weight belonging to a state s. We assume that the rewards applied to the neuronal and algorithmic models are

equivalent if the minimum and maximum values of the equilibrium value function are equivalent. We therefore select values

of mV and cV that minimize the function |Vmin − V (wmin) | + |Vmax − V (wmax) |, resulting in mV = 0.6 s, cV = −10.0

and a reward for the discrete-time TD(0) implementation of r = 12.161.

The discrete-time algorithmic implementation selects actions by the Gibbs softmax method (see introduction). As this
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nonlinear function cannot be mapped to the neuronal action selection process on the basis of first spike time probabilities, we

arbitrarily set the learning parameter for the policy update to β = 0.3. The learning behaviour is not particularly sensitive to

the choice of β in the range [0.1, 0.5]; for higher values the learning is less stable leading to a worse equilibrium performance

(data not shown). Similarly to the neuronal implementation, we restrict the maximal and minimal probabilities of selecting

an action by restricting the maximal and minimal values for the action preferences p to the range [1, 5.8]. This results in

a maximum probability of choosing an action of 97.59%, as for the neuronal implementation, and a minimal probability

of 0.27%, compared to the value of 2.82% in the neuronal implementation. If this contraint is relaxed, the discrete-time

algorithmic implementation results in a slightly better equilibrium performance.
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