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1 Glossary

Low Grade Serous (LGS) Ovarian cancer subtype characterized by small micropapillae
that infiltrate ovarian stroma. Somatic KRAS, ERBB2, or BRAF mutations are found
in two thirds of the cases and TP53 is rarely mutated.

High Grade Serous (HGS) Highly proliferative ovarian carcinoma subtype characterized
by genomic instability due to TP53 loss and in some cases BRCA1/2 mutations. This
cancer may originate in the fallopian tube.

Clear cell carcinoma (CCC) Ovarian carcinoma subtype characterized by large epithe-
lial cells with abundant clear cytoplasm.

Endometrioid tumor (EMD) Ovarian carcinoma subtype composed of tubular glands
bearing a close resemblance to benign or malignant endometrium.

Mucinous tumor (MUC) Ovarian carcinoma with similarities to mucinous colonic carci-
nomas.

Yolk sac tumor (YKS) Ovarian germ cell tumor that represents a proliferation of both
yolk sac endoderm and extraembryonic mesenchyme.

Granulosa cell tumor (GRC) Ovarian tumors that arise from granulosa cells character-
ized by a single nucleotide variation in FOXL2.
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Small cell hypercalemic (SCH) Ovarian cancer subtype characterized by diffuse sheets
of cells punctured by variable numbers of follicle-like spaces. Often presents with
hypercalcemia.
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2.1 Table S1 - Table of all gene fusion predictions

The table of all gene fusion predictions is provided in tab delimited format with the following
named columns labelled in the first line of the file. The order of the columns below does not
correspond to the order in the file.

adjacent fusion between adjacent genes

break adj entropy min minimum of break adj entropy1 and break adj entropy2

break adj entropy1 di-nucleotide entropy of the 40 nucleotide sequence adjacent to the
fusion boundary in gene 1

break adj entropy2 di-nucleotide entropy of the 40 nucleotide sequence adjacent to the
fusion boundary in gene 2

break predict breakpoint prediction method, not currently used

breakpoint homology number of homologous nucleotides at the fusion boundary

breakseqs estislands percident maximum percent identity of fusion sequence alignments
to est islands

cdna breakseqs percident maximum percent identity of fusion sequence alignments to
cdna

classification adaboost classifier result, TRUE for a real fusion, FALSE for an artifact

cluster id random identifier assigned to each prediction

cnv break1 a cnv breakpoint as determined using Affy SNP 6.0 genome arrays exists in
gene 1 or within 2kb upstream or downstream

cnv break2 a cnv breakpoint as determined using Affy SNP 6.0 genome arrays exists in
gene 2 or within 2kb upstream or downstream

coding1 fusion splice / breakpoint in coding sequence of gene 1

coding2 fusion splice / breakpoint in coding sequence of gene 2

concordant ratio proportion of spanning reads considered concordant by blat
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deletion fusion produced by a genomic deletion

downstream1 fusion splice / breakpoint is downstream of gene 1

downstream2 fusion splice / breakpoint is downstream of gene 2

est breakseqs percident maximum percent identity of fusion sequence alignments to est

eversion fusion produced by a genomic eversion

exonboundaries fusion splice at exon boundaries

exonic1 fusion breakpoint in exonic sequence of gene 1

exonic2 fusion breakpoint in exonic sequence of gene 2

expression1 expression of gene 1 as number of concordant pairs aligned to exons

expression2 expression of gene 2 as number of concordant pairs aligned to exons

fish validated fusion was validated by FISH

gene align strand1 alignment strand for spanning read alignments to gene 1

gene align strand2 alignment strand for spanning read alignments to gene 2

gene chromosome1 chromosome of gene 1

gene chromosome2 chromosome of gene 2

gene end1 end position for gene 1

gene end2 end position for gene 2

gene name1 name of gene 1

gene name2 name of gene 2

gene start1 start of gene 1

gene start2 start of gene 2

gene strand1 strand of gene 1

gene strand2 strand of gene 2
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gene1 ensembl id of gene 1

gene2 ensembl id of gene 2

genome breakseqs percident maximum percent identity of fusion sequence alignments
to genome

genomic break pos1 genomic position in gene 1 of fusion splice / breakpoint

genomic break pos2 genomic position in gene 2 of fusion splice / breakpoint

genomic strand1 genomic strand in gene 1 of fusion splice / breakpoint, retained sequence
upstream on this strand, breakpoint is downstream

genomic strand2 genomic strand in gene 2 of fusion splice / breakpoint, retained sequence
upstream on this strand, breakpoint is downstream

interchromosomal fusion produced by an interchromosomal translocation

interrupted index1 ratio of coverage before and after the fusion splice / breakpoint in
gene 1

interrupted index2 ratio of coverage before and after the fusion splice / breakpoint in
gene 2

interrupted1 fusion is predicted to interrupt expression of gene 1

interrupted2 fusion is predicted to interrupt expression of gene 2

intronic1 fusion splice / breakpoint is in an intronic region of gene 1

intronic2 fusion splice / breakpoint is in an intronic region of gene 2

inversion fusion produced by genomic inversion

library name name of the RNA-Seq library

max map count maximum value for the number of alignment locations for each spanning
read

mean map count mean value for the number of alignment locations for each spanning
read
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min map count minimum value for the number of alignment locations for each spanning
read

num multi map number of spanning reads for which more than one alignment location
exists

orf fusion combines genes in a way that preserves a reading frame

probability probability estimate produced by adaboost classifier that the gene fusion is
real

read through fusion involving adjacent potentially resulting from co-transcription rather
than genome rearrangement

span count number of spanning reads supporting the fusion

span coverage max maximum of span coverage1 and span coverage2

span coverage min minimum of span coverage1 and span coverage2

span coverage1 coverage of spanning reads aligned to gene 1 as a proportion of expected
coverage

span coverage2 coverage of spanning reads aligned to gene 2 as a proportion of expected
coverage

splicing index1 number of concordant pairs in gene 1 spanning the fusion splice / break-
point, divided by number of spanning reads supporting the fusion with gene 2

splicing index2 number of concordant pairs in gene 2 spanning the fusion splice / break-
point, divided by number of spanning reads supporting the fusion with gene 1

splitr count number of split reads supporting the prediction

splitr min pvalue p-value, lower values are evidence the prediction is a false positive

splitr pos pvalue p-value, lower values are evidence the prediction is a false positive

splitr sequence fusion sequence predicted by split reads

splitr span pvalue p-value, lower values are evidence the prediction is a false positive

upstream1 fusion splice / breakpoint is downstream of gene 1
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upstream2 fusion splice / breakpoint is downstream of gene 2

utr3p1 fusion splice / breakpoint is in the 3 prime utr of gene 1

utr3p2 fusion splice / breakpoint is in the 3 prime utr of gene 2

utr3pexchange fusion is an exchange of 3 prime utrs

utr5p1 fusion splice / breakpoint is in the 5 prime utr of gene 1

utr5p2 fusion splice / breakpoint is in the 5 prime utr of gene 2

utr5pexchange fusion is an exchange of 5 prime utrs

validated validated by RT-PCR and sanger sequencing across the fusion boundary

2.2 Table S2 - Table of predicted interrupted genes

The table of all interrupted expression predictions for validated fusions is provided in tab
delimited format with the following named columns labelled in the first line of the file.

library name name of the RNA-Seq library

cluster id identifier of the gene fusion prediction

genename name of the gene

gene ensembl id for the gene

before size total length of exons before the fusion boundary and preserved in a putative
fusion gene

after size total length of exons after the fusion boundary and not preserved in a putative
fusion gene

fusion library ratio interrupted expression index in library containing the fusion

other ratios mean mean interrupted expression indices in libraries not containing the fu-
sion
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other ratios stddev standard deviation of interrupted expression indices in libraries not
containing the fusion

fusion library expr expression (reads per nucleotide) of the gene in library containing the
fusion

other expr mean mean expression (reads per nucleotide) of the gene in libraries not con-
taining the fusion

other expr stddev standard deviation of expression (reads per nucleotide) of the gene in
libraries not containing the fusion

ratio pvalue p-value associated with the Wilcoxon test that the interrupted expression
index in the fusion library is higher than the interrupted expression indices in other
libraries

expr pval p-value associated with the Wilcoxon test that the expression of the gene in the
fusion library is higher than the expression of the gene in other libraries

promotor exchange ratio pvalue < 0.05 and expr pval < 0.1

2.3 Table S3 - Table of predicted CNVs

The table of predicted copy number variations (CNVs) is provided in tab delimited format
with the following unnamed columns.

column 1 name of the RNA-Seq library

column 2 chromosome of the CNV

column 3 start position of the CNV

column 4 end position of the CNV

column 5 number of probes for the CNV

column 6 median log ratio copy number, <0 for loss >0 for gain
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2.4 Table S4 - FISH probe selection table

The table of all FISH experiments and their result is provided in tab delimited format with
the following named columns labelled in the first line of the file.

library name name of the RNA-Seq library

gene1 gene 1 of the fusion

gene1 cyto band cytogenetic band(s) for gene 1

gene1 bac1 BAC 1 for gene 1 (ucsc genome browser)

gene1 bac2 BAC 2 for gene 1

gene2 gene 2 of the fusion

gene2 cyto band cytogenetic band(s) for gene 2

gene2 bac1 BAC 1 for gene 2

gene2 bac2 BAC 2 for gene 2

result result of the FISH validation

2.5 Table S5 - Table of Validation Sets and RT-PCR primers

The table of RT-PCR primers and validation results is provided in tab delimited format with
the following named columns labelled in the first line of the file.

library name name of the RNA-Seq library

gene1 gene 1 of the fusion

gene2 gene 2 of the fusion

gene1 id ensembl gene id for gene 1
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gene2 id ensembl gene id for gene 2

defuse id deFuse id if predicted by deFuse

mapsplice id MapSplice id if MapSplice was run on this library, and MapSplice predicted
this fusion

fusionseq id FusionSeq id if FusionSeq was run on this library, and FusionSeq predicted
this fusion

assembled sequence assembled sequence as detailed in the main text for deFuse predic-
tions, Section 4.11 for MapSplice predictions, or Section 4.10 for FusionSeq predictions

forward primer forward primer used for RT-PCR

reverse primer reverse primer used for RT-PCR

amplicon size size of amplicon that should result from successful RT-PCR

comment additional information about the RT-PCR result, if necessary

final result final result of RT-PCR and sequencing

validation set validation set that this fusion belongs to, see main text

2.6 Table S6 - Ovarian gene expression table

The table of ovarian gene expression estimated from RNA-Seq is provided in tab delimited
format. Genes are in the first column, and subsequent columns contain the expression
estimate for that gene for each library.

2.7 Table S7 - Sarcoma gene expression table

The table of sarcoma gene expression estimated from RNA-Seq is provided in tab delimited
format. Genes are in the first column, and subsequent columns contain the expression
estimate for that gene for each library.
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2.8 Table S8 - Table of positive and negative controls

The table of all positive and negative control deFuse predictions is provided in tab delimited
format with named columns as for Table S1, with the following exceptions. The probability
and classification columns are not included. A column named leave one out probability is
included corresponding to the probability estimate calculated for the given fusion when the
adaboost model is trained on all but the given fusion and then used to classify that fusion.

2.9 Table S9 - UMOD aligned read counts

A table of read counts for each transcript for each library is provided in tab delimited format.
The first column is the library name, the following 4 columns are the counts of number of
reads aligning in paired end mode to the 4 transcript variants of UMOD.

2.10 Table S10 - Gene names and their ensembl ids

A table of ensembl gene identifiers and their corresponding gene names is provided in tab
delimited format with the following named columns labelled in the first line of the file.

gene name gene name

ensembl id ensembl gene identifier

2.11 Dataset S1 - RT-PCR sequence traces

The sequence traces for all fusions successfully validated by RT-PCR are provided in the
form of ab1 files.
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2.12 Dataset S2 - FISH images

FISH images are provided for all attempted FISH experiments.

2.13 Dataset S3 - MapSplice Output

Two files are provided for each of the 6 libraries for which MapSplice was used to predict
fusions. The fusion.junction file corresponds to the similarly named file produced by Map-
Splice. The junctions.txt file contains a list of all predicted splice sites calculated by parsing
the CIGAR strings of each alignment in the alignments.sam file produced by MapSplice.

2.14 Dataset S4 - FusionSeq Output

The confidence.gfr file is provided for each of the 3 libraries for which FusionSeq was used
to predict fusions.

3 Supplementary Results

3.1 Towards a classifier for gene fusions predictions

We sought to develop a classifier for gene fusion predictions so that we would not have to
rely on arbitrary thresholds. We selected the following 11 features, described in detail in
section 4.7. We chose to not select features that could be related to expression, such as the
number of split or spanning reads, since we did not wish to bias the classifier towards highly
expressed fusions.

• Spanning read coverage

• Split position p-value

• Minimum split anchor p-value
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• Corroboration p-value

• Concordant ratio

• Fusion boundary di-nucleotide entropy

• Fusion boundary homology

• cDNA adjusted percent identity

• Genome adjusted percent identity

• EST adjusted percent identity

• EST islands adjusted percent identity

We established whether each feature could be used to discriminate between true and false
positives by plotting histograms of each feature for the 121 predictions in the example dataset
(figure 1).
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Positive

Negative

Figure 1: Histograms of each feature for all 121 predictions in the example dataset of 60
positive and 61 negative predictions

14



4 Supplementary Computational Methods

4.1 Conditions for considering discordant alignments to have orig-
inated from reads spanning the same fusion boundary

Let r be the read length, fivep(aX) be the aligned position in transcript X of the 5’ end of
the read and let strand(aX) be the strand of that alignment aX . Then the fusion boundary
region is given by equation 1.

br(aX) =


[fivep(aX) + r , fivep(aX) + lmax − r] if strand(aX) = +

[fivep(aX)− lmax + r , fivep(aX)− r] if strand(aX) = −
(1)

Let aX , aY , bX and bY be the alignments to transcript X and Y of paired end reads a and
b. We define the overlapping boundary region condition as the condition that the fusion
boundary regions in each transcript must overlap in order to consider paired end reads a and
b to have originated from the same fusion transcript. The overlapping boundary region con-
dition ensures that there exists a valid location for the fusion boundary in transcript X and
transcript Y that would simultaneously explain both paired end alignments. Included in the
overlapping boundary region condition is the condition that strand(aX) = strand(aY ) and
strand(bX) = strand(bY ). The overlapping boundary region condition is defined specifically
as given in equation 2.

(br(aX) ∩ br(bX) 6= ∅) ∧ (br(aY ) ∩ br(bY ) 6= ∅) (2)

Suppose now that transcripts X and Y are concatenated together as fusion transcript XY
with a +− alignment configuration (alignments are to the + strand of X and the − strand
of Y ). The location of the fusion boundary in each transcript is unknown, as is the variable
d that corresponds to the distance between the two fusion boundaries in the concatenated
sequence. The fragment lengths la and lb of fragments a and b are unknown also. However,
it is possible to calculate the difference between the fragment lengths as |la − lb| = |za − zb|

15



as shown in figure 2. We define the similar fragment length condition as the constraint that
|la− lb| must be no more than lmax− lmin for us to consider paired end reads a and b to have
originated from the same fusion transcript.

Transcript X Transcript Y

z  = l  + d

d

a a

z  = l  + db b

Unknown Fusion
Boundaries

Fragment b

|za − zb| = | l a + d − (l b + d)| = | l a − l b| ≤ lmax − lmin

Fragment a

Figure 2: Fragment length difference can be calculated as |za − zb|.

Trivially, if XY produces a −+ alignment configuration then Y X will produce a +− con-
figuration and should be considered instead. However, it may also be interesting to consider
the situation in which XY results in a −− or ++ configuration because although the pre-
diction may not represent a chimeric transcript with preserved open reading frame, it may
represent an expressed structural variation or gene interruption. For this situation, a +−
configuration can be obtained by considering the reverse complement of either X or Y and
recalculating the alignment positions to that reverse complemented sequence.

In practise, however, it is not necessary to remap the position of each alignment to the
concatenated sequence described above, since any offset added to the positions of alignments
to X or Y will be incorporated into the value d and will cancel out when calculating |za−zb|.
For the same reason, if it is necessary to reverse complement either X or Y , all that is
required is to consider the negation of the positions of alignments to whichever of X or Y
it was necessary to reverse complement, since any additional offset will be incorporated into
the value d, and will cancel out. The value za (and zb) can be calculated, with consideration
for the strand of the alignments, using equation 3. Note that this formulation of the similar
fragment length condition is equivalent to that given in the main text, and allows for easier
calculation of maximal valid clusters using the method in 4.2.
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za =


fivep(aY ) + fivep(aX) if strand(aX) = strand(aY )

fivep(aY )− fivep(aX) if strand(aX) 6= strand(aY )
(3)

4.2 Generating Maximal Valid Clusters

We provide a polynomial time algorithm for calculating a set of clusters of paired end align-
ments, such that any two paired end alignments satisfy the overlapping boundary region and
similar fragment length conditions, and such that those clusters are maximal.

Let G be the set of transcripts under consideration. Let S = {+,−} be the set of strands.
Let AX,Y,S,T be the set of alignments such that one end finds at least one alignment to strand
S of transcript X and the other end finds at least one alignment to strand T of transcript Y .
Consider all distinct sets AX,Y,S,T 6= ∅. Let AX be the alignments to transcript X and AY be
the alignments to transcript Y . Maximal paired end alignment clusters PX,Y,S,T satisfying
both conditions can be computed in polynomial time as follows.

1. Create the fusion boundary region clusters CX for transcript X. The fusion boundary
region clusters can be created using a polynomial time algorithm as described in [2],
reiterated here. Fusion boundary regions br(AX) are sorted by their start coordinate.
Clustering proceeds by adding regions in left to right order to cluster Ck

X until a region
is encountered that does not overlap with all other regions in Ck

X . Cluster Ck
X is kept

unless it is a proper subset of Ck−1
X . Cluster Ck+1

X is initialized to Ck
X \ a where a is

the region in Ck
X with the leftmost end coordinate and the process repeats. Repeat for

transcript Y creating CY .

2. Create clusters of paired end alignments DCX ,CY
where every paired end alignment

a ∈ DCX ,CY
satisfies a ∈ CX ∧ a ∈ CY . For any DCX ,CY

it should be true that any two
paired end alignments in DCX ,CY

satisfy the overlapping boundary region condition.

3. Refine clusters of paired end alignments DCX ,CY
into clusters of paired end alignments

{Di
CX ,CY

} that also satisfy the similar fragment length condition. For each paired end
alignment a in DCX ,CY

calculate the value za. Sort the alignments by z and use a
sliding window of size lmax − lmin to calculate clusters {Di

CX ,CY
}. Specifically, proceed
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by adding alignments to cluster Dk
CX ,CY

in order of increasing z while maintaining the
property that the difference between the lowest and highest z values in Dk

CX ,CY
is less

than or equal to lmax − lmin. Cluster Dk
CX ,CY

is kept unless it is a proper subset of

Dk−1
CX ,CY

. Cluster Dk+1
CX ,CY

is initialized to Dk
CX ,CY

\a where a is the paired end alignment
with the lowest z value.

4. Remove any cluster that is the subset of another cluster. Let PX,Y,S,T = {Di
CX ,CY

} be
the resulting set of clusters. It can be easily verified that PX,Y,S,T is the set of maximal
paired end alignment clusters satisfying both conditions.

4.3 Split read boundary sequence prediction

Let CX,Y,S,T be a paired end alignment cluster that is evidence between strand S of transcript
X and strand T of transcript Y . Let AX and AY be the end alignments of each paired end to
transcripts X and Y respectively. Let br(AX) = ∩aX∈AX

br(aX) and br(AY ) = ∩aY ∈AY
br(aY ).

For each alignment with one end aligning to transcript X we calculate the mate alignment
region denoted mate(aX) as in equation 4.

mate(aX) =


[
fivep(aX) + lmin − r , fivep(aX) + lmax

]
if strand(aX) = +

[
fivep(aX)− lmax , f ivep(aX)− lmin + r

]
if strand(aX) = −

(4)

For each alignment with one end aligning to transcript X, if br(AX)∩mate(aX) 6= ∅ then add
the sequence of the end that does not align to transcript X to MX . Repeat the process for
transcript Y to create MY . Create the sequence SX by extracting the sequence of transcript
X in the range br(AX) expanded by r on each side.. Repeat for transcript Y to create
SY . Reverse complement SY if S = T . Reverse complement the sequences in MX . Reverse
complement the sequences in MY if S 6= T . For each candidate split read r ∈MX∪MY = M
align r to SX using dynamic programming based local alignment and penalizing initial gaps
in the end sequence. Repeat with the reverse of sequence r and the reverse of sequence SY

(see supplementary section 4.4). Proceed as described in the main text of the paper.
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4.4 Dynamic programming matrix definition

We use dynamic programming based local alignment penalizing initial gaps in the read
sequence as part of the method for finding read sequences split by the fusion boundary. Let
δ(p, q) = m if p = q otherwise δ(p, q) = u, thus m is the match score. Let g be the score
given for a gap in either the read sequence of the transcript sequence. Let r be the read
sequence and S the reference sequence on one side of the fusion boundary. The dynamic
programming matrix may be defined as follows [8].

D(i, 0) = 0 0 ≤ i ≤ |S|
D(0, j) = D(i, j − 1) + g 0 < j ≤ |r|

D(i, j) = max


D(i− 1, j − 1) + δ(p, q)
D(i− 1, j) + g
D(i, j − 1) + g

0 < i ≤ |S|, 0 < j ≤ |r|

(5)

4.5 Covariance between the lengths of fragments spanning a fusion
boundary

We do not assume that the set of fragment lengths {li} of paired end reads spanning the
same fusion boundary are drawn independently from the fragmet length distribution P (L).
Thus the variance of l̄ includes a covariance term Cov(L1, L2) as given by equation 6. The
covariance Cov(L1, L2) represents the degree to which two fragments overlapping the same
position are likely to have the same length.

V ar(L̄) = nV ar(L) +

(
1− 1

n

)
Cov(L1, L2) (6)

We estimate the covariance between the lengths of two fragments originating from the same
location in the transcriptome using concordant alignments to cDNA. Concordant alignments
to cDNA often contain paired end alignments that are consistently aligned to the wrong
splice variant causing some alignments to imply the wrong fragment length. In an attempt
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to mitigate this affect we only consider paired end alignments for which the implied fragment
length is in the range [µ− 3σ µ+ 3σ] where µ and σ are the mean and standard deviation of
inferred fragment length distribution. We begin by selecting n positions in the transcriptome
at random. For each position we select at random, if they exist, two paired end alignments
with one end aligning entirely to the left and one end aligning entirely to the right of that
position. Let the fragment lengths implied by the two paired end alignments selected for
position i be given by li1 and li2. Equation 7 is used to estimate the covariance between the
two random variables L1 and L2 representing the fragment lengths of two reads spanning
the same fusion boundary.

Ĉov[L1, L2] =

∑
i li1li2
n

−
∑

i li1
∑

j lj2

n2
(7)

4.6 Covariance between split read statistics for reads split by a
fusion boundary

We do not assume that the values pi calculated for reads split by a fusion boundary are
drawn independently from a uniform distribution. To model dependency we estimate the
covariance Cov(pi, pj). We begin by selecting n positions in the transcriptome at random.
For each position we select at random, if they exist, two paired end alignments with one end
overlapping that position by at least nanchor nucleotides. We calculate p1 and p2 for both
of these split alignments as given by equation 10. Equation 8 is then used to estimate the
covariance between two random variables P1 and P2 representing pi values of two reads split
by the same fusion boundary. An equivilent analysis is used to estimate Ĉov(Q1, Q2) for qi
values as calculated by equation 10.

Ĉov(P1, P2) =

∑
i pi1pi2
n

−
∑

i pi1
∑

j pj2
n2

(8)
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4.7 Features

For each fusion prediction we calculate a number of features to assist in the discrimination
between real fusions and false positives.

Spanning read count Number of reads spanning the fusion boundary.

Spanning read coverage Normalized spanning read coverage (section 4.7.1).

Split read count Number of reads split by the fusion boundary.

Split position p-value P-Value for the hypothesis that the split position statistic was cal-
culated from split reads that are evenly distributed across the fusion boundary (section
4.7.2).

Minimum split anchor p-value P-Value for the hypothesis that the minimum split an-
chor statistic was calculated from split reads that are evenly distributed across the
fusion boundary (section 4.7.2).

Corroboration p-value P-Value for the hypothesis that the lengths of reads spanning the
fusion boundary were drawn from the fragment length distribution (section Corrobo-
rating spanning and split read evidence in the main text).

Concordant ratio Proportion of spanning reads supporting a fusion that have a concordant
alignment using blat with default parameters.

Fusion boundary di-nucleotide entropy Di-nucldeotide entropy calculated 40 nt up-
stream and downstream of the fusion boundary for the predicted sequence, taking
the minimum of both values (section 4.7.3) .

Fusion boundary homology Number of homologous nucleotides in each gene at the pre-
dicted fusion boundary (section 4.7.4).

cDNA adjusted percent identity Maximum adjusted percent identity (section 4.7.5) for
the alignments of the predicted sequence to any cDNA.

Genome adjusted percent identity Maximum adjusted percent identity (section 4.7.5)
for the alignments of the predicted sequence to the genome.
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EST adjusted percent identity Maximum adjusted percent identity (section 4.7.5) for
the alignments of the predicted sequence to any EST.

EST island adjusted percent identity Maximum adjusted percent identity (section 4.7.5)
for the alignments of the predicted sequence to any EST island (section 4.7.6).

4.7.1 Normalized spanning read coverage

For each fusion partner gene X we calculate cX , the number of nucleotides matched in
X by at least one of the prediction’s spanning reads alignments. We then normalize cX
by the expected coverage lavg − rmin where lavg is the mean fragment length and rmin is
the minimum read length. The normalized spanning read coverage for a prediction is the
minimum of the normalized coverage calculated for each gene predicted as fused (equation 9).
PCR duplicates of poor quality reads, or systematic alignment errors for small homologous
regions are expected to result in smaller values for the normalized spanning read coverage
than predictions representing real fusions.

Normalized spanning read coverage =
min(cX , cY )

lavg − rmin

(9)

4.7.2 Split position p-value and minimum split anchor p-value

Split read alignments are prone to systematic alignment errors that produce false positive
fusion boundary predictions. We expect a true positive to produce a certain number of
reads split approximately in half by the fusion boundary, whereas many false positives are
identified by the lack of any reads that are split approximately in half. We calculate two
statistics in order to identify false positive split alignments.

For each of the n split alignments supporting a prediction, let li and ri be the number of
nucleotides aligning to the left and right of the fusion boundary respectively. Under the null
hypothesis that the fusion boundary is real, the normalized split position pi (equation 10),
and normalized minimum split anchor qi (equation 11) should be uniformly distributed on
[0, 1] and have expected value E[pi] = E[qi] = 0.5 and variance V ar[pi] = V ar[qi] = 1

12n
.
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pi =
li − nanchor

li + ri − 2nanchor

(10)

qi =
min(li, ri)− nanchor

li+ri
2
− nanchor

(11)

A dependence between pi values for reads split by the same fusion boundary means that the
sample variance of a set of n pi values includes a covariance term. The covariance term and
sample variance of n pi values are calculated as described in 4.6. A dependence between qi
is resolved similarly. The samples means of the n pi and n qi values are assumed normally
distributed.

A two sided z-test with alternative hypothesis E[p] 6= 0.5 is used to calculate the split position
p-value. A one sided z-test with alternative hypothesis that E[q] < 0.5 is used to calculate
the minimum split anchor p-value. Significant values for these p-values represents evidence
to reject the null hypothesis that the split reads are uniformly distributed across the fusion
boundary.

4.7.3 Fusion boundary di-nucleotide entropy

A common source of false positive fusion boundary predictions using split alignments results
from the alignment of low complexity reads such as poly-A reads to low complexity regions
in genes. In order to identify spurious fusion boundary predictions caused by low complexity
reads, we calculate the di-nucldeotide entropy of the predicted fusion boundary sequence.
Let D = {ninj : ni, nj ∈ {A,C, T,G}} be the set of all possible di-nucldeotides. Let S be
a sequence of length m and let count(d, S) be the number of occurrences of di-nucleotide d
in sequence S. The di-nucleotide entropy of the sequence S can be calculated as given by
equation 12.

H(S) = −
∑
d∈D

pd,S log2 pd,S

pd,S =
count(d, S)

m− 1
(12)
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Let Su be the 40 nucleotides of the predicted sequence upstream of the fusion boundary, and
let Sd be the 40 nucleotides of the predicted sequence downstream of the fusion boundary.
For the purposes of this study we use m = 40. We calculate the fusion boundary di-nucleotide
entropy as min(H(Su), H(Sd)). The fusion boundary di-nucleotide entropy is expected to
be lower for fusion boundary predictions involving low complexity sequence on either side of
the fusion boundary

4.7.4 Fusion boundary homology

Reverse transcriptase (RT) during cDNA preparation has been identified previously as a
mechanism for producing chimeric cDNA fragments [3]. An identifying feature of chimeric
cDNA produced by template switching is the existence of short homologous sequence at
the ’splice site’ implied by the cDNA sequence [3]. Thus, to identify predictions resulting
from chimeric reads produced by template switching during RT, we calculate the length of
homologous sequence at the fusion boundary.

Let S be the predicted sequence for a fusion prediction between gene X and gene Y , and let
l be length of S. Let mX and mY be the number of matches minus mismatches for the best
alignments of S to all splice variants of X and Y respectively. We calculate an estimate of
the fusion boundary homology as given by equation 13.

Fusion boundary homology = mX +mY − l (13)

Note that if a prediction is caused by misalignments of non-chimeric reads from a single
gene, the predicted sequence may align with high sequence similarity to only that gene. This
situation will also produce a higher than normal value for the fusion boundary homology,
also indicating a likely false positive. All alignments of S to splice variants of X and Y were
obtained using blat [4].

4.7.5 Adjusted percent identity

We sought to identify concordant alignments of the predicted fusion sequence to cDNA, EST
and chromosome sequences. However, some predicted fusion sequences are asymmetrical:
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they involve only a small amount of sequence from one of the genes predicted as fused. As
a result, reporting a simple percent identify for the alignment of the predicted sequence
to a cDNA, EST, or chromosome would be biased against asymmetrical fusion prediction
sequences. We use the adjusted percent identity, described below, as an alternative to the
percent identity that does not suffer from a bias against asymmetrical fusion prediction
sequences.

Let S be the predicted sequence for a fusion prediction between gene X and gene Y , let ζ be
fusion boundary in S, and let l be the length of S. Also let SX and SY be the sequences on
the X and Y sides of ζ respectively, with lengths lX and lY respectively. Given an alignment
of S to a cDNA, EST or chomosome sequence, let m be the matches minus mismatches for
the alignment. We first assume that the longer of SX and SY is matched exactly in the
alignment, and any remaining matches exist in the shorter of SX and SY . We then calculate
the adjusted percent identity as the percent identity of the alignment within the shorter of
SX and SY under these assumptions (equation 14). All alignments of S to cDNA, EST and
chromosome sequences were obtained using blat [4].

Adjusted percent identity =
m−max(lX , lY )

min(lX , lY )
(14)

4.7.6 EST islands

We sought to identify predictions that could be explained by alternative splicing as opposed
to underlying genomic structural variation. We use UCSC’s spliced EST alignments [6] as
evidence of co-transcription of genomic regions. An EST island is then defined as the set
of minimal genomic regions such that any splice EST alignment that overlaps with an EST
island is contained within that EST island. EST islands represent islands of co-transcription
in the genome as evident by EST alignments. The EST island adjusted percent identity for
a fusion prediction is the adjusted percent identity of a spliced alignments of the predicted
sequence that falls entirely within an EST island.
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4.8 Filtering

A principled machine learning approach to discriminating between true and false positives
is difficult without a significant number of positive and negative controls. Thus in order
to roughly discriminate between real fusions and false positives, we initially used a set of
thresholds on a subset of the features calculated in section 4.7. These thresholds are given
below.

Spanning read count > 5

Split read count > 3

Spanning read coverage > 0.6

Split position p-value > 0.1

Minimum split anchor p-value > 0.1

Corroboration p-value > 0.1

Concordant ratio < 0.1

cDNA adjusted percent identity < 0.1

Genome adjusted percent identity < 0.1

EST adjusted percent identity < 0.3

EST island adjusted percent identity < 0.3

4.9 Probabilistic motivation for clustering conditions

The two conditions for clustering paired end alignments can be motivated probabilistically
by considering the likelihood of two paired end alignments given that those paired end reads
represent the same fusion transcript. Consider the alignments of two discordant paired end
reads, a and b. Suppose a has an alignment of end aX to transcript X and end aY to transcript
Y. Similarly, suppose b has an alignment of end bX to transcript X and an alignment of end
bY to transcript Y. Figure 3 shows a possible configuration of the alignments.

The distances dX and dY are the differences between the positions of alignments on transcript
X and transcript Y respectively. Also, v is the latent variable representing the unknown
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Figure 3: Paired end configuration

length of the unsequenced region of paired end a. Given v, we can calculate the fragment
lengths xa and xb of paired end reads a and b as,

xa = v + 2r

xb = v − dX − dY + 2r,

where r is the read length.

Thus given v and supposing that paired end reads a and b result from the same fusion isoform
F , we can calculate the probability P (dX , dY |v, F ) as

P (dX , dY |v, F ) =

{
N (xa|µ, σ)N (xb|µ, σ) for v ≥ dX + dY ,

0 otherwise ,

where µ and σ are the inferred fragment length mean and standard deviation. We can now
use the fact that P (dX , dY , v|F ) ∝ P (dX , dY |v, F ) to calculate P (dX , dY |F ).

P (dX , dY |F ) =
∑
v

P (dX , dY , v|F )

=
1

Z

∑
v

P (dX , dY |v, F )
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Z is a normalization constant calculated as follows.

Z =
∑
v

∑
dX

∑
dY

P (dX , dY |v, F )

Figure 4 shows the probability distribution P (dX , dY |F ) for r = 50, µ = 200 and σ = 30.

Figure 4: Probability distribution P (dX , dY |F )

The overlapping boundary region condition and the similar fragment length condition have
equivalent formulations as constraints on dX and dY . The overlapping boundary region con-
dition is equivalent to the constraints given by equations 15 and 16. Any values for dX or dY
outside these constraints will result in non overlapping fusion boundary regions for transcript
X or transcript Y . Values for dX and dY that satisfy constraints given by both equations
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15 and 16 will have overlapping boundary regions and will satisfy the overlapping bound-
ary region condition. The similar fragment length condition is equivalent to the constraint
−(lmax − lmin) ≤ dX + dY ≤ lmax − lmin, which is simply a reformulation of the equation in
figure 2c.

−lmin − 2r < dX < lmax + 2r (15)

−lmin − 2r < dY < lmax + 2r (16)

−(lmax − lmin) ≤ dX + dY ≤ lmax − lmin (17)

We compared the region of the dx × dy configuration space that satisfies the overlapping
boundary region condition and similar fragment length condition for α = 0.05 with a region
contained within an equivalent contour of P (dX , dY |F ). We used r = 50, µ = 200 and
σ = 30 as was used for figure 4. We calculated lmax − lmin for α = 0.05 and then calculated
q =

∑
|li−lj |<lmax−lmin

P (li)P (lj) = 0.99422. The value q represents the combined probablity
of seeing two fragments that satisfy constraints given by equations 15, 16, and 17 for α = 0.05.
We then calculated the contour of P (dX , dY |F ) that contains probability mass equal to q.
Figure 5 shows the region of the configuration space satisfying the two conditions together
with the equivalent contour of P (dX , dY |F ).
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Similar fragment length condition α = 0.05
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Region satisfying both conditions
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Figure 5: Overlapping boundary region condition and similar fragment length condition
in the context of probability distribution P (dX , dY |F ). For α = 0.05, the region of the
configuration space satisfying the two conditions overlaps with the equivalent contour of
P (dX , dY |F ).
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4.10 FusionSeq predictions

FusionSeq version 0.6.1 was used to predict gene fusions in CCC15, CCC16 and EMD6.
These 3 cases were chosen because they contained the greatest number of validated predic-
tions, with 6, 3 and 4 validations respectively. We followed the instructions provided on the
FusionSeq and RSeqTools websites, reiterated here. We first downloaded the hg18 bundled
dataset. We then created a junction library from the ucsc provided 2bit genome and the
gene models provided in the bundled dataset using the following command:

createSpliceJunctionLibrary hg18.2bit knownGeneAnnotationTranscriptCompositeModel.txt 45

Next we used bowtie-build to generate bowtie indices for the human genome and junction
library combined. Bowtie was used with default parameters to independently generate align-
ments for each end of the paired end reads. The two bowtie outputs were converted into
MRF format using the bowtiePairedFix executable provided by the author and bowtie2mrf

from RSeqTools.

bowtie hg18 junctions reads.1.fastq reads.1.bwtout

bowtie hg18 junctions reads.2.fastq reads.2.bwtout

cat reads.1.bwtout reads.2.bwtout | sort | bowtiePairedFix | bowtie2mrf paired -sequence > data.mrf

Fusions were predicted based on the data.mrf file using the following commands with default
parameters as given by the FusionSeq website:

geneFusions data 4 < data.mrf > data.1.gfr 2> data.1.log

(gfrAbnormalInsertSizeFilter 0.01 < data.1.gfr | gfrPCRFilter 4 4 | gfrProximityFilter 1000

| gfrAddInfo | gfrAnnotationConsistencyFilter ribosomal | gfrLargeScaleHomologyFilter

| gfrRibosomalFilter | gfrSmallScaleHomologyFilter) > data.gfr 2> data.log

gfrConfidenceValues data < data.gfr > data.confidence.gfr

To compare the overlap between FusionSeq predictions and deFuse predictions, we aligned
the FusionSeq read evidence to fusion sequences predicted by deFuse using bowtie. Compar-
ing the results in this way avoided problems that would result from trying to compare gene
identifiers from different sets of gene annotations.

We also sought to validate fusions predicted by FusionSeq that were not predicted by deFuse.
In order to maximize our chances of successful validation, we applied a set of filters to the
FusionSeq output before selecting fusions to validate. We first sought to classify as concor-
dant reads that were evidence for the FusionSeq predictions. We aligned the read evidence
to the genome and ESTs from UCSC, and searched for alignments of each within 1000nt of
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each other on the same chromosome/EST. We removed any FusionSeq prediction for which
at least one read could be classified as concordant using this method. We also removed
FusionSeq predictions for which at least one end of one read aligned to a ribosomal RNA
(ensembl 54 gene models). Since we were were not interested in differences between the
results that arose because of the use of different sets of gene annotations, we removed Fu-
sionSeq predictions for which none of the reads aligned using blat to gene regions considered
by deFuse. Several of the predictions were removed because they involved reads that did
not align to a contiguous region of the genome or to contiguous exons, making it difficult
to pinpoint a breakpoint and design primers. Finally, we removed fusions also predicted by
deFuse, and selected the 3 predictions from each library with the highest RESPER score.
This produced 3 candidates for CCC16 and EMD6, and 2 candidates for CCC16 which only
contained 2 fusions after filtering.

4.11 MapSplice predictions

MapSplice version 1.14.1 was first used predict fusions in CCC15, CCC16 and EMD6. To
reiterate, these 3 cases were chosen because they contained the greatest number of validated
predictions, with 6, 3 and 4 validations respectively. We followed the set of instructions
on the MapSplice website, downloading the ucsc genome and building a bowtie index. The
default paired end configuration file was used, with the following differences.

read length = 50

segment length = 16

junction type = non-canonical

run MapPER = yes

full running = no

do fusion = yes

We then searched the MapSplice results for the validated deFuse predictions. We selected
all of the sequences in the synthetic sequence column of fusion.junction file and used blat
with default parameters to find an alignment of those junction sequences to the sequences
predicted by deFuse. We also extracted all splice junction predictions from the CIGAR
string of each alignment in the alignments.sam file, and compared those splice junction
predictions with the validated deFuse predictions.

We suspected MapSplice might perform better on the 75mer libraries. Thus, we ran Map-
Splice on the 75mer reads from SCH1, EMD5 and GRC5. The default paired end configu-
ration file was used, with the following differences.
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read length = 75

segment length = 25

junction type = non-canonical

run MapPER = yes

do fusion = yes

We sought to validate fusions predicted by MapSplice that were not predicted by deFuse. In
order to maximize our chances of successful validation, we applied a set of conservative filters
to the MapSplice output before selecting fusions to validate. From the fusion.junction

file we selected fusions with at least 2 supporting reads that were predicted to occur within
the boundaries fo the ensembl genes we were considering in this study. We then removed
predictions for which the synthetic sequence aligned with greater than 90% identity by blat
to the genome, or greater than 50% identity to ribosomal RNA. After applying these filters
we were left with 14 predictions from CCC15, CCC16, EMD6, SCH1, EMD5 and GRC5.

4.12 Running deFuse on melanoma RNA-Seq datasets

RNA-Seq datasets for 13 melanoma samples and cell lines were downloaded from the short
read archive. These datasets are half the size of our average sarcoma or ovarian cancer
datasets, and 4 of the fusions represented in these datasets have 5 or less supporting reads.
Thus we adjusted the following parameters of deFuse so that deFuse would be able to predict
fusions in these datasets. The clustering precision parameter is equal to 1− α.

clustering precision = 0.80

span count threshold = 2

split count threshold = 1

4.13 Calculating expression from RNA-Seq alignments

Reads were aligned to the genome (NCBI36/hg 18) using MAQ (0.7.1) [5] and allowing for
up to 5 mismatches. Raw expression values (read counts) were obtained by summing the
number of reads that mapped to human genes based on the Ensembl database (Release
51). Gene expression values were normalized using a quantile normalization procedure using
aroma.light (1.16.0.) package in R (2.11.1).

33



4.14 Inferring copy number from Affymetrix SNP 6.0

The Affymetrix SNP6.0 arrays were normalized using CRMAv2 [1] using the default settings
for performing allelic-crosstalk calibration, probe sequence effects normalization, probe-level
summarization, and PCR fragment length normalization. Log ratios are then computed by
normalizing against a pooled reference generated using a normal dataset of 270 HapMap
samples obtained from Affymetrix. Segmentation is performed using a modified version of
a hidden Markov model for detecting aCGH copy number, CNA-HMM [7]. The model has
been extended to analyze high-density genotyping array platforms (available for download
at http://compbio.bccrc.ca/) . The HMM model performs segmentation of the log ratio
intensity data and predicts discrete copy number status for each resulting segment from the
set of 6 possible states (homozygous deletion, hemizygous deletion, neutral, gain, ampli-
fication, and high-level amplifcation). The boundaries of the segments provide candidate
breakpoints in the genome as a result of copy number alteration events. CNV predictions
are provided in supplementary table S3. The given data is formated to be visualized using
IGV (http://www.broadinstitute.org/igv).

5 Supplementary Experimental Methods

5.1 Paired-End RNA Sequencing

For each patient sample polyadenylated RNA was purified from 10ug of DNAse1 (Invitro-
gen, Carlsbad, CA) treated total RNA using the MACSTM mRNA Isolation Kit (Miltenyi
Biotec, Germany). Double-stranded cDNA was synthesized from the purified polyA+RNA
using SuperscriptTM. Double-Stranded cDNA Synthesis kit (Invitrogen, Carlsbad, CA) and
random hexamer primers (Invitrogen) at a concentration of 5M. The resulting cDNA was
sheared using a Sonic Dismembrator 550 (Fisher Scientific, Canada) and size separated by
PAGE (8%). The 190-210bp DNA fraction was excised, eluted overnight at 4C in 300 uL of
elution buffer (5:1, LoTE buffer (3 mM Tris-HCl, pH 7.5, 0.2 mM EDTA)-7.5 M ammonium
acetate) and purified using a QIAquick purification kit (Qiagen, Mississauga, ON). The se-
quencing library was prepared following the Illumina Genome Analyzer paired end library
protocol (Illumina Inc., Hayward, CA) with 10 cycles of PCR amplification. PCR products
were purified on Qiaquick MinElute columns (Qiagen, Mississauga, ON) and assessed and
quantified using an Agilent DNA 1000 series II assay and Qubit fluorometer (Invitrogen,
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Carlsbad, CA) respectively. The resulting libraries were sequenced on an Illumina Genome
Analyzer II following the manufacturer’s instructions. Sequencing read lengths varied be-
tween 36 and 75 nucleotides. Image analysis and basecalling was performed by the GA
pipeline v1.0 (Illumina Inc., Hayward, CA) using phasing and matrix values calculated from
a control phiX174 library run on each flowcell. Raw Quality scores were calibrated by align-
ment to the reference human genome (NCBI build 36.1, hg18) using ELAND (Illumina Inc.,
Hayward, CA).

5.2 Direct sequencing

RNA was extracted from frozen tumors using Qiazol (Qiagen, Valencia, CA) and reverse
transcribed using SuperScriptIII (Invitrogen, Carlsbad, CA). The cDNA was amplified us-
ing the primers as given in supplementary table S5 using PCR SuperMix High Fidelity
(Invitrogen, Carlsbad, CA). The cycling parameters were: an initial denaturation of 94C
for 1 min. followed by 35 cycles of 94C 30sec denaturation, 58C 30sec annealing and 72C
30sec extension, followed by a final extension of 72C for 5min. PCR was performed on a
MJ Research Tetrad (Ramsey, MN). PCR products were purified using a MinElute PCR
purification kit (Qiagen, Valencia, CA) and bi-directionally sequenced using an ABI BigDye
terminator v3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA) and an ABI
Prism 3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA). Sequence traces in
ab1 format are provided in supplementary data S9.

5.3 Fluorescent in situ hybridization

Metaphases and metaphase slides were produced by using standard methods. Locus-specific
FISH analysis was performed by using BACs from Human BAC library RPC1-11 (BACPAC
Resources Centre, Childrens Hospital, Oakland Research Institute). Supplementary table S4
shows the locations of the BAC probes used for gene fusion validation. BACs were directly
labeled with either Spectrum green or Spectrum orange (Vysis, Downer’s Grove, IL). The
chromosomal locations of all BACs were validated by using normal metaphases (results
not shown). Probe labeling and FISH was performed by using Vysis reagents according
to the manufacturer’s protocols. Slides were counterstained with DAPI for microscopy.
For all slides, FISH signals and patterns were identified on a Zeiss Axioplan epifluorescent
microscope. Signals were interpreted manually, and images were captured by using the ISIS
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FISH imaging software (MetaSystems Group, Belmont, MA). A cutoff of 2 breaks per 100
nuclei was selected for a positive score based on examining 230 other soft-tissue tumors.
Efficiency of the break-apart FISH probes on TMAs was demonstrated with the t(X;18) in
synovial sarcomas [9]. FISH images are provided in supplementary data S10.
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