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Supporting Methods

Derivation of rate constant relationship for non-cooperative ligand binding

Sequential binding of two ligands L to an enzyme with two binding sites E2 can be described by the following

two equations:

L+ E2

kon−−−⇀↽−−−
koff

LE2, (1)

L+ LE2

k2on−−−⇀↽−−−
k2off

L2E2. (2)

From these one can obtain the following mass balance equations:

d[E2]
dt

= −kon[L][E2] + koff [LE2],

d[LE2]
dt

= kon[L][E2]− koff [LE2]− k2on[L][LE2] + k2off [L2E2],

d[L2E2]
dt

= k2on[L][LE2]− k2off [L2E2].

Solving for the steady state, by setting these equations equal zero, and using the expression for the total

number of enzyme molecules E2T = [E2] + [LE2] + [L2E2], it can be shown that the fraction of enzyme

binding sites occupied by a ligand molecule is given by

fB =
(2[L] +Kd2)[L]

2([L]2 +Kd2[L] +Kd ·Kd2)
, (3)

where the equilibrium dissociation constants Kd = koff

kon
and Kd2 = k2off

k2on
have been used. The concentra-

tion of ligand resulting in half of the binding sites being bound is then

C50 =
√
Kd ·

√
Kd2.

Cooperativity can be described using the Hill equation, fB = [L]n

(C50)n+[L]n , where the Hill coefficient n is

indicative of the degree of cooperation between multiple ligands L binding to a macromolecule. Formulating
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ligand binding as a Hill equation with coefficient of 1 gives

fB =
[L]√

Kd ·
√
Kd2 + [L]

. (4)

Equating Equations 3 & 4 it becomes apparent that Equations 1 & 2 are non-cooperative only when Kd2 =

4 · Kd. If the probability of ligand unbinding is independent of the number of inducers bound, the rate of

unbinding when two ligands are bound will be twice that when a single ligand is bound: k2off = 2 · koff .

Therefore, k2on = k2off

Kd2
= 2·koff

4·Kd
= 1

2kon.

Lattice microbe reaction operator

Models of spatially inhomogeneous stochastic chemical systems are often described using the reaction-

diffusion master equation (RDME). In the formalism of the RDME the system’s volume is divided into a

set of discrete subvolumes (commonly a lattice in numeric implementations) with the chemical species in

the system being distributed amongst the subvolumes. Reactions occur only between species within a

subvolume and each subvolume is considered to be well stirred such that the reactions follow standard

kinetic theory (constant probability per unit time). Each subvolume is then well-described by the chemical

master equation (CME). Diffusion is accounted for by random transitions of species between subvolumes

also with constant probability per unit time. The time evolution of the probability P for the system to be in a

specific configuration x (counts of every chemical species for each subvolume) starting from a given initial

state x0 at t0 obeys the RDME:

∂P (x, t)
∂t

=
∑
v∈V

R∑
r=1

−ar(xv)P (x, t) + ar(xv − Sr)P (x− Sr1v, t)

+
∑
i∈V

∑
j∈V

N∑
α=1

−dαijxαi P (x, t) + dαji(x
α
j + 1)αP (x+ 1αj − 1αi , t)

Here, xαv is the number of molecules of species α (α = 1, · · · , N ) in subvolume v (v ∈ V ). R is the number

of reactions. ar is the reaction propensity for reaction r in given the state of a subvolume xv. S is the

stoichiometry matrix. dαij is the diffusive propensity for one molecule of species α to diffuse from subvolume

i to j.

The RDME is difficult to analytically study for even simple systems, and instead is most often sampled

using a Monte Carlo approach. Many independent realizations of the system’s path through the probabil-

ity space are computationally calculated and then combined to reconstruct the probability density function

(PDF) of the RDME. Several implementations of RDME samplers have been published [1–6]. Our approach
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is focused on sampling the RDME for systems that approximate the physical aspects of an individual cell,

therefore we call it the lattice microbe method. Diffusion and reaction rate constants can be spatially depen-

dent to allow the modeling of cellular features such as the membrane, nucleoid, and other cellular structures.

Simulating spatially resolved stochastic systems is computationally costly because of the large number of

calculations associated with tracking the diffusion of many particles. We take a brute-force approach by

adopting a parallelizable RDME method involving timesteps and nearest neighbor transitions and perform

the diffusion calculations using the GPU [7]. Uniquely, our approach is of sufficient performance to permit

the inclusion of in vivo crowding into the model, by constructing an approximation of the crowded cytoplasm

using reflective sites.

Computing a single realization of the system’s RDME starts with the discretization of space into a three-

dimensional cubic lattice of spacing λ and time into time steps of length τ . Then, starting from an initial state

at t0, the state of the system at times tτ , t2τ , t3τ , . . . is sequentially calculated. Each time step is broken into

reaction and diffusion operations. The reaction operator R calculates any changes in the chemical species

present in each subvolume over the time step and the diffusion operator D calculates any redistribution of

the species to and from neighboring subvolumes:

N(α,~r, t+ τ) = D · RN(α,~r, t),

where N(α,~r, t) gives the number of molecules of species α present in lattice site (subvolume) ~r at time

t. The implementation of the diffusion operator has previously been described [7], here we focus on the

reaction operator.

Chemical species can react during a reaction operation according to defined stoichiometry and kinetic

rates. We assume a well-stirred environment in each subvolume during a timestep and calculate the proba-

bility per unit time of a reaction occurring in a Gillespie-like manner [8]. For the current study we constrained

the time steps and reaction volumes such that there was a low probability (≤5%) for any particular reaction

to occur in a subvolume during a given time step. This allowed us to assume that a maximum of one reac-

tion occurred per time step per subvolume. The reaction operator calculates a random realization of all the

possible reactions given the current state of a lattice site and the stoichiometry matrix S, which contains the

changes in the counts of each of the S chemical species for all of the M reactions:

RN(α,~r, t) = N(α,~r, t) +
M∑
m

Sα,m θ(m,~r, t).

The function θ(m,~r, t) is a stochastic function returning 1 if reaction m occurs in lattice site ~r during the time
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interval t–t+ τ , otherwise 0. It function such that the probability of a reaction occurring is consistent with

P (θ(m,~r, t) = 1) =
∫ τ

0

am(~r, t)e−
PM

m am(~r,t) t′ dt′

when am(~r, t) is the Gillespie propensity (probability per unit time) of reaction m occurring in the subvolume

~r at time t.

Lattice coarse graining technique

The lattice microbe method simulates reaction-diffusion processes on a three-dimensional lattice repre-

senting the cellular environment. A key first step in performing a lattice microbe simulation is defining

the three-dimensional cellular model, including the membrane, cytoplasmic obstacles, nucleoid, and other

cellular features. The initial model is constructed in continuous space and then mapped onto a lattice at

a given resolution, typically 2-16 nm. The model building algorithm uses a computational geometry data

structure known as a kd-tree [9] to store the three-dimensional model. The kd-tree data structure is a

binary search tree that efficiently stores objects in three-dimensional space and allows quick placement

of new objects into unoccupied volume. This becomes particularly important when randomly placing the

cytoplasmic obstacles, which at 50% crowding by volume amount to ∼1.5 million objects. Features in the

cellular environment are mapped to the diffusion and reaction properties of lattice sites, such that particles

diffuse and/or react differently based on the cellular architecture. For example, cytoplasmic obstacles are

mapped as a group of lattice sites into which diffusion of particles is prohibited.

When the dimensions of a lattice site are larger than the size of the object being mapped onto the

lattice, there is no longer a one-to-one or one-to-many mapping of objects to lattice sites. In that case, it

is necessary to create a coarse-grained representation of the cell that omits the detailed description of the

objects while preserving their overall effect. Many of the cytoplasmic obstacles in the in vivo Escherichia

coli model are much smaller than the 16 nm lattice size used in the long-time simulations presented in the

main text. The key contribution of these obstacles to the simulations is the effect they have on diffusion of

particles: their presence causes diffusion in the cytoplasm to be anomalously subdiffusive. As such, the cell

models for the long-time simulations were coarse-grained to 16 nm resolution in such a way as to preserve

the anomalous behavior of proteins diffusing in the cytoplasm.

Anomalous diffusion can be phenomenologically described by the equation 〈r2〉 = 6Dtα, where 〈r2〉 is

the mean-square displacement,D is the diffusion coefficient, t is the time, and α is the anomalous exponent.

For normal diffusion α = 1 and for subdiffusion α < 1. As shown in the main text, for a protein diffusing in

a crowded environment α is one at short time scales, monotonically decreases to a given minimum value
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dependent on the packing density, and then monotonically increases back to one at long time scales. A

coarse-graining function that preserves anomalous diffusion, then, should minimize the error in the minimum

value of the α exponent.

The coarse-graining function used in this study first determines the fraction of each site’s three-dimensional

volume that is occupied by obstacles in the continuous space model. Then, all of the lattice sites with occu-

pancy greater than a specified cutoff are considered occupied and the remainder empty. To determine the

proper cutoff value, simulations are performed using a range of cutoff values and the α diffusion exponent

measured for each. The cutoff that minimizes the error in α relative to the expected value becomes the

coarse-graining parameter for that particular lattice occupancy and spacing. For 16 nm lattice spacing and

50% packing using the in vivo obstacle distribution reported in the main text, the best cutoff was 0.19, i.e.

all lattice sites with more than 19% volume occupied in the continuous space model were marked as ob-

structed. This corresponded to 37.6 % of the total number of sites in the coarse-grained model. This coarse

graining method did result in a shift of the anomalous minimum to greater time scales, but the agreement

with the α value at the minimum was good.
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Supporting Video Legends

Video S1: Simulated colony of E. coli cells responding to inducer. Video composite of trajectories from

six spatial PFB+IV simulations at 15 µM inducer. Yellow circles are LacY proteins and red circle are mY

mRNA molecules. Two cells begin the process of switching to the induced state.

Video S2: Trajectory of a PFB+IV+CET cell responding to inducer. Visualization of a single slow-growth

CET modeled cell responding to 15 µM inducer. Gray spheres are ribosomes and the blue region the nu-

cleoid. Yellow circles are LacY proteins and red circles are mY mRNA molecules. The repressor–operator

complex is green and the free operator is white.
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