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Summary

We summarize an accurate and efficient scheme for simulating large networks
of integrate-and-fire neurons. We adapted this scheme from Morrison et al.
(2007). The scheme consists of two parts:

1. Exact computation of subthreshold membrane potentials on discrete
time points, in parallel.

2. Estimation of continuous spike times by interpolation between discrete
time points. This estimation is especially important in our study,
because STDP is highly dependent on precise spike timing.

Background: the integrate-and-fire model

In a network of integrate-and-fire neurons, the membrane potential for a
neuron is given by

C
dV

dt
= Ileak(t) + Isyn(t) + Iext, (1)

where C is membrane capacitance and Ileak, Isyn, Iext are currents (Burkitt
et al., 2006).

Ileak represents passive current leaks across the membrane and is given
by

Ileak(t) = −g(V − E),

where g is the membrane conductance, and E is the equilibrium potential.
Isyn represents currents generated by synaptic inputs, and is given by

Isyn(t) = V0

∑

i

wi

∑

ti

(

e−(t−ti)/τ1
− e−(t−ti)/τ2

)

, (2)
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where V0 is a constant, wi is the weight of presynaptic neuron i, ti are the
times of previous spikes of i (ti < t), and τ1 and τ2 are synaptic decay
constants.

Iext represents the external current and needs to be kept constant. Sim-
ulations with variable Iext are hence composed of multiple simulation seg-
ments, with constant Iext in each segment.

Exact subthreshold integration of the integrate-and-

fire model

Exact integration without synaptic currents

Without synaptic currents, (1) is a one-dimensional system,

C
dV

dt
= Ileak(t) + Iext = −g(V − E) + Iext = −g

(

V − E −
Iext
g

)

.

By substituting y1 = V − E − Iext/g, we obtain

C
dV

dt
= C

dy1
dt

= −gy1,

which is solved exactly as

y1(t) = e−gt/Cy1(0). (3)

Henceforth we consider the evolution of y1, noting that given our parameter
values (Table 1), we may always revert to V via

V (t) = y1(t) + E +
Iext
g

= y1(t) + 100Iext.

Eq. (3) shows that y1 exponentially decays to zero from y1(0) < 0.
Larger Iext make y1(0) more negative, and hence increase the decay rate
(somewhat like stretching a spring increases the speed of its subsequent
compression). It follows that the membrane potential V may only cross
its spike threshold Vthr, when the corresponding threshold ythr1 = Vthr −

E − Iext/g is negative. For our parameter values (Table 1) this requires
Iext > 0.18.

Given some initial condition y1(t) and a time step h, the constant P (h) =
e−gh/C exactly computes y1(nh) for any integer n,

y1(h) = P (h)y1(0)

y1(2h) = P (h)y1(h) = P (h)2y1(0)

y(nh) = P (h)y1((n− 1)h) = P (h)ny1(0). (4)

Note that P (h) needs to be calculated only once.
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Exact integration with synaptic currents

Incorporation of synaptic currents makes (1) three dimensional. We now
introduce two further auxiliary variables, y2 and y3, such that

y2 = e−(t−tj)/τ1 y3 = e−(t−tj)/τ2

τ1
dy2
dt

= −y2 τ2
dy3
dt

= −y3. (5)

At the arrival of each spike from neuron i, y2 and y3 are modified as

y2 ← y2 + V0wi y3 ← y3 + V0wi.

We may then restate (2) as

Isyn(t) = y2 − y3. (6)

We hence incorporate the effects of all previous spikes, without the need to
store individual spike times (Brette et al., 2007). Eq. (6) is possible because
Eq. (5) are both linear.

We may now restate (1) as

C
dV

dt
= C

dy1
dt

= −gy1 + y2 − y3, (7)

and we may restate (7) and (5) in matrix form,

dy

dt
= Ay =





−g/C 1/C −1/C
0 −1/τ1 0
0 −1/τ2









y1
y2
y3



 (8)

where y represents the state vector of the system. The solution of (8) is
equivalent to (3),

y(t) = eAty(0),

where eAt is known as the matrix exponential. As the exponential function
is defined by its ‘series expansion’, ea =

∑

∞

i=0
an

n! , so the matrix exponential

function is defined by a corresponding series expansion, eA =
∑

∞

i=0
A

n

n! ,
where An = A×A . . .×A (n times) represents matrix multiplication. For
a given time step h, Matlab derives P(h) = eAh in symbolic form,

A=sym(’[-h*g/C, h/C, -h/C; 0, -h/tau_1, 0; 0, 0, -h/tau_1]’)

matrix_exponential=expm(A);

pretty(matrix_exponential)

which finally gives us

P(h) =









e−
hg

C
τ1

C−gτ1
(e−

hg

C − e
−

h
τ1 ) − τ2

C−gτ2
(e−

hg

C − e
−

h
τ2 )

0 e
−

h
τ1 0

0 0 e
−

h
τ2









y(0)
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P(h) is constant, needs to be calculated only once and, in symmetry with
(4), computes y(nh) exactly for any integer n,

y(nh) = P(h)ny(0).

Estimation of continuous spike times

Spikes occur between grid points, and are estimated by interpolation. For
instance, consider a membrane potential V that has crossed its threshold
Vthr in the interval [t, t + h]. Linear interpolation would estimate the spike
time tspike as

tspike ≈ t+
Vthr − V (t)

V (t+ h)− V (t)
.

Quadratic or cubic interpolation may also be used and may be more precise.
Estimations of spike times introduce a number of technical caveats, in-

volving changes in the timing of the post-synaptic potential and emergence
from refractory period. These technical issues are discussed in detail in
Morrison et al. (2007), section 4.2.
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