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Text S1

Model

We consider a Pearson random walk [8,17] with randomly drawn exponential distributed displacements

δ and turn angles θ. Let

P (δ) = λe−λδ (1)

the probability distribution function (pdf) for the displacements and

P (θ) = cN e−γ|θ| (2)

the pdf for the turning angles where −π ≤ θ ≤ π; cN being the normalization constant cN = γ(1−e−πγ).

Each time step t = 1, 2, . . ., the displacement rt and the turn angle θt are chosen. Thereafter the 2D

displacement vector is added to the actual position vector,

~Rt+1 = ~Rt + ~rt (3)

where ~rt = rt [cos (θt−1 + θt), sin (θt−1 + θt)].

It is interesting to note that first, any symmetric peaked shape of the turn angle pdf with well defined

variance, can serve as a generating pdf for a Pearson random walk.

Second, for any γ <∞ the Pearson walk becomes a normal random walk in the limiting case t→∞. Thus

the mean-square displacement (MSD) is asymptotical linear in time, 〈~R2
t 〉 ∼ t. However, for intermediate

time scales t ≈ 1/γ, the Pearson walker exhibits directional, or so-called persistent, motion, being an

intermediate regime between normal diffusion 〈~R2
t 〉 ∼ t (γ = 0) and ballistic motion 〈~R2

t 〉 ∼ t2 (γ =∞).

The 3D direction correlation function, also called cosine correlation function, for symmetric displacement

pdfs with finite variance, is given by

C(t) = 〈cos(θ)〉 (4)

where the turn angles θ are taken between successive displacements to a time scale t. For a 3D motion

the correlation function can be derived as the mean cosine of the turning angles c to the power of t [17],

C(t) = ct. (5)
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We calculate the mean cosine of turning angles for their pdf, Eq. (2), as

c =
γ2

1 + γ2
coth(πγ/2), (6)

where coth(x) ≡ (ex + e−x)/(ex − e−x). Finally, we readily obtain from Eq. (5) and Eq. (6) the 2d

direction correlation function, given Eq. (2), as

C(t) = ct/2 = e−t/tp , (7)

where

tp = −2/ log(c) (8)

is the persistence time. Note that Eq. (7) is independent of the spatial scale 1/λ. Notably, for γ = ∞

the turn angle pdf becomes a delta function, and C(t) = c = 1 whereas the normal random walk case

γ = 0 is represented in an uniform turn angle pdf implying a delta shaped correlation function C(t) = δ(t).

The 44 trypanosome trajectories display an exponential displacement distribution with mean value 〈δ〉 =

1.26µm. For the model we therefore assume the overall displacement distribution P (δ) = λ exp (−λδ)

with λ = 1/δ. We plugged the fitted values for the persistence times tIWp , for intermediate walkers, and

tPW
p , for persistent walkers (Table 1 in the main manuscript), into Eq. (8). As explained in the main

manuscript, the persistence time for the tumbling walker class tRWp is heavily determined by the fast

rotation motion. Here we use, however, the fitted value tRWp ≈ 0.60s for illustration. Finally, for the

three motility modes, solving Eq. (8) for γ yields γRW = 1.21, γIW = 6.55, and γPW = 8.19, respectively.

Complementary to Fig.1 and Table I in the main text, we exhibit in Fig.1 below the turn angle distribution

for each motility mode. The turn angle distribution for the tumbling walker class is already very close to

true random walkers that would display a perfectly flat curve in Fig.1 (corresponding to the trivial value

tRWp = 0). Experimental trajectories were categorized using empirically found thresholds for the spread

of the turn angle distribution.
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Figure S 1. Turn angle distributions for a short time lag (τ = 10 simulation time steps (t = 70s)) for
the three motility modes. Model parameters: λ = 0.794, γ = 1.21 (tumbling walkers, red), (b) γ = 6.55
(intermediate walkers, blue) (c) γ = 8.19 (persistent walker, black). Distributions averaged over 1000
realizations.


