Text S1

Model

We consider a Pearson random walk $[8,17]$ with randomly drawn exponential distributed displacements δ and turn angles θ. Let

$$
\begin{equation*}
P(\delta)=\lambda e^{-\lambda \delta} \tag{1}
\end{equation*}
$$

the probability distribution function (pdf) for the displacements and

$$
\begin{equation*}
P(\theta)=c_{N} e^{-\gamma|\theta|} \tag{2}
\end{equation*}
$$

the pdf for the turning angles where $-\pi \leq \theta \leq \pi ; c_{N}$ being the normalization constant $c_{N}=\gamma\left(1-e^{-\pi \gamma}\right)$. Each time step $t=1,2, \ldots$, the displacement r_{t} and the turn angle θ_{t} are chosen. Thereafter the 2D displacement vector is added to the actual position vector,

$$
\begin{equation*}
\vec{R}_{t+1}=\vec{R}_{t}+\vec{r}_{t} \tag{3}
\end{equation*}
$$

where $\vec{r}_{t}=r_{t}\left[\cos \left(\theta_{t-1}+\theta_{t}\right), \sin \left(\theta_{t-1}+\theta_{t}\right)\right]$.
It is interesting to note that first, any symmetric peaked shape of the turn angle pdf with well defined variance, can serve as a generating pdf for a Pearson random walk.

Second, for any $\gamma<\infty$ the Pearson walk becomes a normal random walk in the limiting case $t \rightarrow \infty$. Thus the mean-square displacement (MSD) is asymptotical linear in time, $\left\langle\vec{R}_{t}^{2}\right\rangle \sim t$. However, for intermediate time scales $t \approx 1 / \gamma$, the Pearson walker exhibits directional, or so-called persistent, motion, being an intermediate regime between normal diffusion $\left\langle\vec{R}_{t}^{2}\right\rangle \sim t(\gamma=0)$ and ballistic motion $\left\langle\vec{R}_{t}^{2}\right\rangle \sim t^{2}(\gamma=\infty)$. The 3D direction correlation function, also called cosine correlation function, for symmetric displacement pdfs with finite variance, is given by

$$
\begin{equation*}
C(t)=\langle\cos (\theta)\rangle \tag{4}
\end{equation*}
$$

where the turn angles θ are taken between successive displacements to a time scale t. For a 3D motion the correlation function can be derived as the mean cosine of the turning angles c to the power of t [17],

$$
\begin{equation*}
C(t)=c^{t} \tag{5}
\end{equation*}
$$

We calculate the mean cosine of turning angles for their pdf, Eq. (2), as

$$
\begin{equation*}
c=\frac{\gamma^{2}}{1+\gamma^{2}} \operatorname{coth}(\pi \gamma / 2) \tag{6}
\end{equation*}
$$

where $\operatorname{coth}(x) \equiv\left(e^{x}+e^{-x}\right) /\left(e^{x}-e^{-x}\right)$. Finally, we readily obtain from Eq. (5) and Eq. (6) the 2d direction correlation function, given Eq. (2), as

$$
\begin{equation*}
C(t)=c^{t / 2}=e^{-t / t_{p}} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{p}=-2 / \log (c) \tag{8}
\end{equation*}
$$

is the persistence time. Note that Eq. (7) is independent of the spatial scale $1 / \lambda$. Notably, for $\gamma=\infty$ the turn angle pdf becomes a delta function, and $C(t)=c=1$ whereas the normal random walk case $\gamma=0$ is represented in an uniform turn angle pdf implying a delta shaped correlation function $C(t)=\delta(t)$.

The 44 trypanosome trajectories display an exponential displacement distribution with mean value $\langle\delta\rangle=$ $1.26 \mu \mathrm{~m}$. For the model we therefore assume the overall displacement distribution $P(\delta)=\lambda \exp (-\lambda \delta)$ with $\lambda=1 / \delta$. We plugged the fitted values for the persistence times t_{p}^{IW}, for intermediate walkers, and t_{p}^{PW}, for persistent walkers (Table 1 in the main manuscript), into Eq. (8). As explained in the main manuscript, the persistence time for the tumbling walker class t_{p}^{RW} is heavily determined by the fast rotation motion. Here we use, however, the fitted value $t_{p}^{\mathrm{RW}} \approx 0.60 s$ for illustration. Finally, for the three motility modes, solving Eq. (8) for γ yields $\gamma_{\mathrm{RW}}=1.21$, $\gamma_{\mathrm{IW}}=6.55$, and $\gamma_{\mathrm{PW}}=8.19$, respectively. Complementary to Fig. 1 and Table I in the main text, we exhibit in Fig. 1 below the turn angle distribution for each motility mode. The turn angle distribution for the tumbling walker class is already very close to true random walkers that would display a perfectly flat curve in Fig. 1 (corresponding to the trivial value $t_{p}^{\mathrm{RW}}=0$). Experimental trajectories were categorized using empirically found thresholds for the spread of the turn angle distribution.

Figure S 1. Turn angle distributions for a short time lag ($\tau=10$ simulation time steps $(t=70 s)$) for the three motility modes. Model parameters: $\lambda=0.794, \gamma=1.21$ (tumbling walkers, red), (b) $\gamma=6.55$ (intermediate walkers, blue) (c) $\gamma=8.19$ (persistent walker, black). Distributions averaged over 1000 realizations.

