Supporting Information

S1 Stability of the network

We want to determine the conditions for the stability of the time-independent solution of the equation
vt) =w+ [ Gt r)str)dr =y + (G +3) (1) 1)

For simplicity we assume exponential interaction kernels, such that for non-zero elements g;;(t) =
geO(t) exp(—t) for excitatory connections and g;;(t) = grO(t) exp(—t) for inhibitory ones. The elements
of the integrated kernel matrix G(0) are then §;;(0) € {gg, 91,0} , depending on the connection type.
Using the Fourier transform of the interaction kernel matrix, G(w) = G’(O)ﬁ, (1) can be transformed
to

iwy(w) = —g(w) + G(0)3(w) + (1 +iw)yod(w) (2)

which formally becomes, after back-transformation, the differential equation

S(t) = ~y(0) + GO)s(0) + 30 + 0. )

Since yo is constant in time, dyo/dt = 0. By definition, in an average over realisations (s)(t) = y(t), then

Ly= 11— GOy + (4)

This differential equation has a stable equilibrium solution if the real part of all eigenvalues of the matrix
[1 — G(0)] is larger than 0. This is exactly the case if, for all eigenvalues A of G, ®(\) < 1. Since
integrated interaction kernels correspond to postsynaptic spikes evoked by presynaptic input spikes, an
intuitive interpretation is that no extra spike of any neuron evokes more than one additional spike in the
network.

In order to interpret correlations as induced by recurrent input we use the series expansion ) G" =
(1—G)~L. The series converges only for matrices G with eigenvalues |A\| < 1. Although stable systems can
exist with |[A| > 1 (one example are strongly inhibitory networks with ®(\) < —1) for this interpretation
we have to restrict ourselves to systems where |A| < 1 for all A.

S2 Average correlations

General case

We want to show that the value of the average correlation in a regular network
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is determined by the out-degree parameters kj.*. Each term Zij k 9ir 97k adds the weighted paths from
all k to 7 in n and to j in m steps. We start with the case for m = 1 and n = 1. It needs to be treated
separately from the ones for n = 0 or m = 0 because all neurons have only one type of output connection.
The term ), jk 9ikgjk counts the weights of common inputs in the network. There are N,, neurons of
population ag € {E, I}. Each causes common input into all possible pairs of neurons of the types a; and



b1 of its postsynaptic populations. For each neuron there are kfl”jfao and k:g’“flo postsynaptic neurons of

the respective population and the weight for each connection is g,,. Therefore
T
DUCETy = D0 Nagh( D kLK) (©)
ij aoe{E,I} a1€{E,I},b1€{E,I}

Adding another step to the path corresponds to another factor G in (6). This leads to an increase in the
number of possible paths. Each endpoint of one branch of the population a; can continue towards kgﬁj}il
neurons of a population ae with a weight g,,. Therefore, by induction, for m,n > 0,
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For n > 0, m = 0 one obtains analogously

Y
g(n,O) — g(O,n) =3 E g?j = E Naogaogal...gan 1k3?¢§0 . k‘gzznfl. (8)
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These equations correspond to the fact that the total number of paths in a network does not depend on
the specific connectivity, provided each neuron has the same number of output connections.

Special case
We treat the special case when there is a uniform connection probability p between all nodes
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For notational simplicity we use ko, = k2* in this calculation. For the first order term, from (8) for
n=1and N = Ng + Ny one finds

(170):l§ YN k k N (k ki) = @ Ne Ni
g N2 - 9i5 = N2 l9eNE(keE + kig) + 91 N1(ker + kir)] = 9(9E N p+gr Np)-
We define the average interaction between two nodes as
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Similarly the common input term can be written as
gt = Nz Zgzkg]k N2 [QENE(kEE + krg)? + giN1 (kg1 + k11)*] = §(Negh + Nigi)p®,
ijk
and we define the average common input as
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n= = (Nggg + Nigi)p*. (11)

Now we show that =
n 4 T
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We start from (8):
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In the same way, one can derive from (7) that for n,m > 1
g(m;n) _ gnun-i-m—QNn—i-m—Z (14)

(12) and (14) can be derived in an alternativ way. If the average across the matrix = >, ; +ij is replaced
by an ensemble average, (), = (g;;) = (¢?) /g and n = (GGT);;) = (¢"V)/g. Then
(9)is) = Y (Giks Ghako e Thn13) © D (Gika) (Ghrka) oo (G _1g) = "N
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and, similarly
(" @)™y = D (G (gkaka) (b1 99T k) G 102 ) - (9510)
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Here we assume that all terms and connections are independent from each other, which is approximately
true only for large matrices and n, m < V.
We finally calculate
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S3 Distance dependent correlations

For distance dependent correlations we proceed analogously as in (15). We replace the sample average
by an ensemble average

co(d) = %Zcm'w = (Cijiva) (17)



Additionally we assume that rates are independent of neuron output

(Ciira) = Y _(bikbisantin) = > (bikbitar)re) =7 Y (birbirak) (18)
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where * is a discrete convolution, pu(d) = (gs,i+4) and 1n(d) = (3_,, gikGi+a,k). Both 1 and 7 can easily be
deduced from the connection rules in a ring, see main text. Note that 7(d) # u * u(d) because neurons
make either excitatory or inhibitory connections.

Analogously one finds (g(%)(d) = (¢(®™)(d) = gu*" u(d). A closed expression for the sum (19) can be
derived after a discrete Fourier transformation

N-1
é(k) =Y c(d) exp(—id2nk/N).
d=0
Using j1 * i = fij2 one can proceed as in (16), since for example (g(m:m)) (k) = g
calculation then returns

n=lppm=1 An analogous
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The additional summand 1 is due to the fact that we did not subtract the rate contribution to the
autocorrelations here. Finally

e(d) = é(k) exp(ik2wd/N). (21)



