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Supporting Information

S1 Stability of the network

We want to determine the conditions for the stability of the time-independent solution of the equation

y(t) = y0 +

∫ ∞
−∞

G(t− τ)s(τ)dτ = y0 + (G ∗ s) (t). (1)

For simplicity we assume exponential interaction kernels, such that for non-zero elements gij(t) =
gEΘ(t) exp(−t) for excitatory connections and gij(t) = gIΘ(t) exp(−t) for inhibitory ones. The elements

of the integrated kernel matrix Ĝ(0) are then ĝij(0) ∈ {gE , gI , 0} , depending on the connection type.

Using the Fourier transform of the interaction kernel matrix, Ĝ(ω) = Ĝ(0) 1
1+iω , (1) can be transformed

to
iωŷ(ω) = −ŷ(ω) + Ĝ(0)ŝ(ω) + (1 + iω)y0δ(ω) (2)

which formally becomes, after back-transformation, the differential equation

d

dt
y(t) = −y(t) + Ĝ(0)s(t) + y0 +

d

dt
y0. (3)

Since y0 is constant in time, dy0/dt = 0. By definition, in an average over realisations 〈s〉(t) = y(t), then

d

dt
y = −[1− Ĝ(0)]y + y0. (4)

This differential equation has a stable equilibrium solution if the real part of all eigenvalues of the matrix
[1 − Ĝ(0)] is larger than 0. This is exactly the case if, for all eigenvalues λ of G, <(λ) < 1. Since
integrated interaction kernels correspond to postsynaptic spikes evoked by presynaptic input spikes, an
intuitive interpretation is that no extra spike of any neuron evokes more than one additional spike in the
network.
In order to interpret correlations as induced by recurrent input we use the series expansion

∑
nG

n =
(1−G)−1. The series converges only for matrices G with eigenvalues |λ| < 1. Although stable systems can
exist with |λ| > 1 (one example are strongly inhibitory networks with <(λ) < −1) for this interpretation
we have to restrict ourselves to systems where |λ| < 1 for all λ.

S2 Average correlations

General case

We want to show that the value of the average correlation in a regular network

1

N2

∑
ij

(cij − yij) =
∑

(n,m)6=(0,0)

g(n,m) =
ȳ

N2

∑
(n,m) 6=(0,0)

∑
ijk

gnikg
m
jk (5)

is determined by the out-degree parameters koutba . Each term
∑

ijk g
n
ikg

m
jk adds the weighted paths from

all k to i in n and to j in m steps. We start with the case for m = 1 and n = 1. It needs to be treated
separately from the ones for n = 0 or m = 0 because all neurons have only one type of output connection.
The term

∑
ijk gikgjk counts the weights of common inputs in the network. There are Na0

neurons of
population a0 ∈ {E, I}. Each causes common input into all possible pairs of neurons of the types a1 and
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b1 of its postsynaptic populations. For each neuron there are kouta1,a0
and koutb1,a0

postsynaptic neurons of
the respective population and the weight for each connection is ga0 . Therefore∑

ij

(GGT )ij =
∑

a0∈{E,I}

Na0
g2a0

(
∑

a1∈{E,I},b1∈{E,I}

kouta1a0
koutb1a0

) (6)

Adding another step to the path corresponds to another factor G in (6). This leads to an increase in the
number of possible paths. Each endpoint of one branch of the population a1 can continue towards kouta2a1

neurons of a population a2 with a weight ga1
. Therefore, by induction, for m,n > 0,

g(n,m) =
ȳ

N2

∑
a0,...,an

∑
b1,...,bm

Na0
g2a0

ga1
...gan−1

gb1 ...gbm−1
kouta1a0

...koutanan−1
koutb1a0

koutb2b1 ...k
out
bmbm−1

(7)

For n > 0,m = 0 one obtains analogously

g(n,0) = g(0,n) =
ȳ

N2

∑
ij

gnij =
∑

a0,...,an

Na0
ga0

ga1
...gan−1

kouta1a0
...koutanan−1

. (8)

These equations correspond to the fact that the total number of paths in a network does not depend on
the specific connectivity, provided each neuron has the same number of output connections.

Special case

We treat the special case when there is a uniform connection probability p between all nodes

koutee

NE
=
koutei

NE
=
koutie

NI
=
koutii

NI
= p. (9)

For notational simplicity we use kab = koutab in this calculation. For the first order term, from (8) for
n = 1 and N = NE +NI one finds

g(1,0) =
ȳ

N2

∑
ij

gij =
ȳ

N2
[gENE(kEE + kIE) + gINI(kEI + kII)] = ȳ(gE

NE

N
p+ gI

NI

N
p).

We define the average interaction between two nodes as

µ ≡ g(1,0)

ȳ
=
g(0,1)

ȳ
= gE

NE

N
p+ gI

NI

N
p. (10)

Similarly the common input term can be written as

g(1,1) =
ȳ

N2

∑
ijk

gikgjk =
ȳ

N2
[g2ENE(kEE + kIE)2 + g2INI(kEI + kII)2] = ȳ(NEg

2
E +NIg

2
I )p2,

and we define the average common input as

η =
g(1,1)

ȳ
= (NEg

2
E +NIg

2
I )p2. (11)

Now we show that

g(0,n) = g(n,0) =
ȳ

N2

∑
ij

gnij = µnNn−1ȳ. (12)



3

We start from (8):

ȳ

N2

∑
ij

gnij =
ȳ

N2

∑
a0,...,an

Na0
ga0

ga1
...gan−1

ka1a0
...kanan−1

=
ȳ

N2

∑
a0,...,an−1

Na0
ga0

ga1
...gan−1

ka1a0︸ ︷︷ ︸
pNa1

... kan−1an−2︸ ︷︷ ︸
pNan−1

(ke,n−1 + ki,n−1︸ ︷︷ ︸
pN

)

=
ȳ

N

∑
a0,...,an−1

Na0
ga0

ga1
...gan−1

pNa1
...pNan−1

p

=
ȳ

N
(NEpgE +NIpgI)n = ȳ(gE

NE

N
p+ gI

NI

N
p)Nn−1. (13)

In the same way, one can derive from (7) that for n,m > 1

g(m,n) = ȳηµn+m−2Nn+m−2 (14)

(12) and (14) can be derived in an alternativ way. If the average across the matrix 1
N2

∑
ij ·ij is replaced

by an ensemble average, 〈·〉, µ = 〈gij〉 = 〈g(1,0)〉/ȳ and η = 〈(GGT )ij〉 = 〈g(1,1)〉/ȳ. Then

〈(gn)ij〉 =
∑

k1,k2,...

〈gik1
gk1k2

...gkn−1j〉 ≈
∑

k1,k2,...

〈gik1
〉〈gk1k2

〉...〈gkn−1j〉 = µnNn−1

and, similarly

〈(gn(gT )m)ij〉 ≈
∑

k1,k2,...,l1,l2...

〈gik1〉〈gk1k2〉...〈gkn−1,n〉〈(ggT )kn,lm〉〈glm−1lm−2〉...〈gjl1〉

= ηµn+m−2Nn+m−2 (15)

Here we assume that all terms and connections are independent from each other, which is approximately
true only for large matrices and n,m� N .
We finally calculate

c =
1

N2

∑
ij

(cij − yij) =

∞∑
(n,m) 6=(0,0)

g(n,m)

= ȳ(
∑
n=1

µnNn−1 +
∑
m=1

µmNm−1 +
∑

n,m=1

µn+m−2Nn+m−2η)

= ȳ(2
∑
r=1

µrNr−1 +
∑
r=1

(r − 1)µr−2Nr−2η)

= ȳ(2µ
∑
r=0

(µN)r + η
∑
r=0

r(µN)r−1)

= ȳ(
2µ

1−Nµ
+

η

(1−Nµ)2
). (16)

S3 Distance dependent correlations

For distance dependent correlations we proceed analogously as in (15). We replace the sample average
by an ensemble average

c(d) =
1

N

∑
i

ci,i+d =̂ 〈ci,i+d〉 (17)
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Additionally we assume that rates are independent of neuron output

〈ci,i+d〉 =
∑
k

〈bikbi+d,kykk〉 ≈
∑
k

〈bikbi+d,k〉〈ykk〉 = ȳ
∑
k

〈bikbi+d,k〉 (18)

With the definition of
〈g(m,n)〉(d) ≡

∑
k

ȳ〈gnikgmi+d,k〉,

〈ci,i+d〉 =
∑
k

ȳ〈bikbi+d,k〉 =
∑
m,n

〈g(m,n)〉(d). (19)

We can approximate the 〈g(m,n)〉(d) by

〈g(m,n)〉(d) =
∑
k0

ȳ〈gnik0
gmi+d,k0

〉 = ȳ
∑

k0,k1,...,kn−1,l1,...,lm−1

〈gikn−1 ...gk1k0gl1k0 ...gi+d,lm−1〉

≈ ȳ
∑

k,k1,...,kn−1,l1,...,lm−1

〈gikn−1
〉...〈gk1kgl1k〉...〈gi+d,lm−1

〉

= ȳ[µ ∗ ... ∗ η ∗ ... ∗ µ](d) = µ ∗n−1 η ∗m−1 µ(d)

where ∗ is a discrete convolution, µ(d) ≡ 〈gi,i+d〉 and η(d) = 〈
∑

k gikgi+d,k〉. Both µ and η can easily be
deduced from the connection rules in a ring, see main text. Note that η(d) 6= µ ∗ µ(d) because neurons
make either excitatory or inhibitory connections.
Analogously one finds 〈g(n,0)〉(d) = 〈g(0,n)〉(d) = ȳµ ∗n µ(d). A closed expression for the sum (19) can be
derived after a discrete Fourier transformation

ĉ(k) =

N−1∑
d=0

c(d) exp(−id2πk/N).

Using µ̂ ∗ µ = µ̂µ̂ one can proceed as in (16), since for example ̂〈g(m,n)〉(k) = ȳµ̂n−1η̂µ̂m−1. An analogous
calculation then returns

ĉ = ȳ(1 +
2µ̂

1− µ̂
+

η̂

(1− µ̂)2
) (20)

The additional summand 1 is due to the fact that we did not subtract the rate contribution to the
autocorrelations here. Finally

c(d) =
1

N

N−1∑
k=0

ĉ(k) exp(ik2πd/N). (21)


