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1 Contour tracking.

The 3D z-stack was deconvolved and corrected for chromatic aberation. We tracked the cell mem-
brane contours using a semi-automated algorithm. On a representative z-slice (typically mid-way
through the stack) the cell contour was approximated by choosing a number of points along the cell
surface. This initial guess was then refined by adding intermediate points and repositioning using
a tracking algorithm that estimated the local membrane tangent using the local intensity modes
identified from transects across the membrane. Tracking was based on any one of the available flu-
orophores or a linear combination; in the analysis shown we tended to use a 3:7 to 1:1 weighting of
the GFP to cherry images, the GFP tending to be the higher quality image. The final contour had
a resolution along the contour of about 1 pixel between points, contour location not being restricted
to the image pixelation. This contour was then lifted to neighbouring slices and refined as above.
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These contours could be patched together to give a mesh model of the cell surface. Intensity data
can be mapped to the contour, thus giving a 3D visualisation of the cell, as Fig. 1C.

Regions of contact interface and free surface were then selected. The s-w coodinates are defined
along the contour, s along the centre line, and w orthogonal to s within the image. The s − w
coordinates of the centres of each pixel are assigned to that pixel; coordinates for the closest contour
centre point are used. In practice the membrane curvature is insufficient to cause ambiguities.

A B C D

Figure 1. 3D reconstruction of synapses from z-stack images. A. Bright field, B. processed 2
colour fluorescence of lower cell in A, C. contour tracking of cell surface in B shown in red on 1:1
channel weighted image, free surface (green) and contact interface (blue) regions used in analysis.
Contour tracking is designed to find an approximate, smooth circumference and thus ignores ruffles.
Free surface (FS) and contact interface (CI) regions are selected by hand avoiding highly ruffled
regions of surface. Contours and ROIs are then lifted and refined in neighbouring slices. D. Local
s− w coordinate system shown on a component of free surface. Scale bar is 5 microns.

2 Instability criterion proof.

We prove Eqns. (5) and (10) of the main text for the general potentials Gc(z), Gl(z) under the
assumption that Dl < D, a reasonable criterion since the long ligand has greater mass. The system
inside the contact interface is given by
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For simplicity we assume the receptor R and ligand A have the same diffusion coefficient. Outside the
interface C = 0, Gl = 0 and A,R,L freely diffuse. The system is completed by boundary conditions
and matching conditions for the edge of cells, Burroughs & Wulfing, BJ 83 (2002) 1784-96. Note
that the difference R − A satisfies the diffusion equation and therefore R − A fluctuations diffuse
until R−A is constant. The system is thus simpler than these 5 coupled equations initially suggest.

To proceed with a stability analysis, we firstly determine the steady state conditions. These are
given by (prime denotes differentiation with respect to z),

G′l(z)L+G′c(z)C = 0, konAR = Ck0
offe

Gc(z) (2)

where A,R,C, L are the uniform (constant) concentrations in the contact interface, and z the uniform
separation. To relate these concentrations to the free surface we assume there is no potential
difference between the contact interface and free surface giving A = Afs, R = Rfs, and use the
definition of the exclusion potential Gl(z), Eqn. (6), to obtain Lfs = LeGl(z). There are conservation
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constraints since the total number of receptor and ligand molecules are conserved assuming the
system is closed (e.g. an agar plate, cell surface). On solving these conditions there are either 1 or
3 steady states.

The stability analysis proceeds as follows. Consider the system in one of the steady states above.
Then compute the growth rates of small fluctuations, assumed sufficiently small that the system
can be linearised around the steady state. The spatial modes can then be analysed separately,
i.e. for modes with spatial depencence cos(sx), sin(sx) we obtain the stability matrix (order
z,A,C, L,R−A),

S =
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Here koff (z) = k0
offe

Gc(z) and we removed R in favour of R−A, which now separates off giving an
eigenvalue −Ds2.

The eigenvalues µ are given by det(S − µ) = 0, there being four solutions to find. To prove they
are all negative (and thus the steady state stable to spatial perturbations), it is useful to define the
determinant,

f(µ) =
∣∣∣∣−kon(A+R)−Ds2 − µ koff (z)

kon(A+R) −koff (z)−Dcs
2 − µ

∣∣∣∣
=

(
Ds2 + µ

) (
Dcs

2 + µ
)

+ koff
(
Ds2 + µ

)
+ kon(A+R)

(
Dcs

2 + µ
)

the central part of S having this form. This determinant has two negative roots µ± < −min(Dc, D)s2

which follows since f(µ) is quadratic in µ (with behaviour f → µ2 as µ→ ±∞), f(−Ds2) < 0 and
f(−Dcs

2) > 0 if Dc < D or vice versa.
We now get the eigenvalue equation,

det(S − µ) =
−λ−1

(
µ+Ds2

) [
f(µ)

(
µ+Dls

2
) (
λµ+G′′l L+G′′cC +Bs4 + Ts2

)
− f(µ)Dls

2L(G′l)
2−

G′c
(
Dls

2 + µ
) (
koffG

′
cC(Ds2 + µ) +DcG

′
cCs

2
(
kon(A+R) +Ds2 + µ

)) ]
= 0

Thus, the four unknown eigenvalues are given by the crossing points of,(
µ+Dls

2
) (
λµ+G′′l L+G′′cC +Bs4 + Ts2

)
−Dls

2L (G′l)
2 =

1
f(µ)

(G′c)
2
C(Dls

2 + µ)
(
koff (Ds2 + µ) +Dcs

2
(
kon(A+R) +Ds2 + µ

))
(4)

the LHS being a quadratic, the right a function with two poles at µ± < 0 and two zeros, one at
µ = −Dls

2 and the other is negative, satisfying µ < −Ds2. The RHS is negative at µ = −Dls
2

(LHS zero), while we assume Dl < D such that this is the zero closest to µ = 0. Further, as
µ → ±∞ the LHS → (koff + Dcs

2) (G′c)
2
C > 0. For the case where µ± < −Dls

2 there are
always 3 negative crossings below µ = −Ds2, Fig. S2; the fourth can be positive depending on if
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.
Similarly, if µ− < −Dls

2 < µ+ we obtain 3 negative crossings below µ+; the fourth crossing is
positive under the same conditions. There are no other cases as Dl < D and at least one of µ± is
more negative than −Ds2. The condition LHS

∣∣
µ=0

< RHS
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µ=0

gives the relation for an instability
to heterogeneous perturbations as, (s 6= 0)

G′′l L+G′′cC +Bs4 + Ts2 < L (G′l)
2 + C (G′c)

2
. (5)

Clearly, s→ 0 is the most unstable mode, ie if it is stable then all modes are stable. This is the state
with infinite wavelength; in a closed system the most unstable state will have wavenumber s = 2π

d ,
d the longest length in the system. In practice s = 0 is a good approximation.
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This analysis applies for general functional forms for Gc/l. Using the spring model for the energies
we thus obtain Eqn. (5) from Eqn. (S5). Finally, by substituting for g2

l = κl
2 (z−hl)2, g2

c = κc
2 (z−lc)2

and using the steady state condition Eqn. (S2) we obtain Eqn. (10).

A B

µ

0

µ

0

Figure 2. Stability criteria as crossing of curves analysis. Two cases illustrating typical crossings
for A. with µ± < −Dls

2, B. µ− < −Dls
2 < µ+. Note the LHS has a zero at µ = −Dls

2 (most
positive zero) whilst the poles are at µ±. The LHS (black), RHS (red) of Eqn. (S4) are shown.

3 Model likelihood.

Here we give the model likelihood for the 3D NK cell flourescence model. This comprises the
fluorescence model Eqns. (8),(9) and the model for the variation of fluorescence transverse to the
membrane. The global parameters are θ1 = {α1, µ1, C

max
1 , Lfs1 , q} and θ2 = {α2, µ2, L

fs
2 } and local

parameters the SQRE gi(s) and the width parameter τfs/ci,i(s), for each position along the contour
(both functions of the coordinate s). We use a Gaussian model for fluorescence decay away from
the contour centre, precisions τfs(s), τci(s), ie allowing for membrane width characteristics to be
dependent on the nature of the surface (contact interface or free surface).

The likelihood of the NK (3D) model for separate channel inference is (slice k)

Lkg = p(τfs,1)p(τci,1)

∏
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)
(6)

where the respective terms are the model for variation of the membrane width precisions τfs/ci,i(s)
along the contour, fluorescence at each free surface contour pixel x and fluorescence at each con-
tact interface contour pixel x, the latter conditional on the local environment (local potentials gi,
distance wx from contour centre). Modelled pixels are close to the contour, typically +/-10 from
the contour centre. Here, s, w are the contour coordinates as Fig. S1D. We bin pixels along the
contour in segments for the coordinate s; typically a bin is 1 pixel wide. The generalisation to mul-
tiple components of free surface and interface is obvious. The likelihood is the product over slices
Lg =

∏
k L

k
g etc. For joint inference, L =

∏
k L

k
gL

k
r , with gi(w) constrained by the linear relation

Eqn. (7). For the 2D analysis, the slice partitioning and membrane width variables are absent.
We describe the model using the Gaussian approximation to the Poisson model discussed in the

text (matching mean and variance). This gives
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where s = sx, w = wx are the s-w coordinates of pixel x. Here the products are over all pixels in
the free surface and contact interface components of the contour respectively. The Gamma model
is similar except the pdf is replaced with that for a Gamma distribution with mean and variance
matching the Gaussian above.

For the membrane width, we constrain variation along the membrane by using a random walk
model, inferred autoregression parameter d (global, identical across slices and free-surface, contact
interface). For each component (free surface, contact interface within each slice) we have, suppressing
τ subscripts,

p(τ |d) =

(
p(τ(s1))

dn/2

(2π)n/2

K∏
k=2

exp
(
−d (τ(sk)− τ(sk−1))2

2

))
, (7)

where K is the number of s-bins in the membrane component, si is the s-coordinate of bin i. For
the first bin we use τ(s1) ∼ Uniform[0, 1].

A variety of methods can be used to estimate the parameters. We used a Bayesian analy-
sis employing Markov chain Monte Carlo (MCMC) simulation for the posterior p(gi, τi, θi|F ) ∝
p(θi)p(gi)p(τi)Li, (for MCMC techniques see Gilks et al. Markov chain Monte Carlo in Practice,
Chapman & Hall, 1995). By using MCMC we can simulate the joint posterior on the parameters,
and thus examine correlations and calculate any moments of interest. Computation of the posterior
requires priors to be given for the parameters. We used a uniform prior for gi on interval [0,3], a
uniform prior on [0,1] for q. We use a conjugate prior for the random walk in the width precision
parametrised by d, p(d) = Γ(a, b) with a, b chosen so that the prior is weak. We used random
walk proposals on all variables, v′ ∼ N(v, σ2

v), the variance σ2
v being tuned during burn-in to give

an acceptance probability between 0.2-0.4. The efficiency of the algorithm can be improved by
reparametrisation.

4 Effect of the point spread function on exclusion energy
correlation.

Here we examine the effect of the point spread function (PSF) on our inferred g1, g2 diagram. We
use the protein-rich supported bilayer experimental data to illustrate its effects; the linearity in the
NK synapse after deconvolution being much stronger so the effect of the PSF is less of an issue,
whilst the 2D data, with the higher ligand levels and thus lower stochasticity/level of fluctuations
has weaker signals as discussed below.

Firstly, we compare raw and deconvolved experimental data, Fig. S3. These give similar re-
sults, specifically the linear relation is apparent in both. However, there are distinct differences:
the background distribution is wider after deconvolution, with relative standard deviations of (red
channel) 9% and 17% respectively. This increase in the uncertainty of the microscope properties,
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(the background infers αi, µiL
fs
i ), explains the increase in the transverse spread in the g1, g2 plot

which is the major cause of the degraded linearity. Of more significance is the emergence of synapse
pixels with CD58 fluorescence below the background in the deconvolved image. These are both a
consequence of the fact that the PSF averages intensities. Thus, for instance, the heterogeneities
in the bilayer (which exclude both fluorphores) cause a spread in background intensity, that under
PSF averaging are less apparent, whilst CD58 intensity in the interface has a reduced range because
of local averaging over the pattern removing extreme values. Since deconvolution is inexact, we also
examine a resized PSF by a factor of 1.2, Figs. S3I-L. Results are again similar suggesting that
the linear relationship is robust to the effects of the PSF. However, there are quantitative effects
on the gradient: under joint channel inference we obtain a gradient −0.406 ± 0.003 (not decon-
volved), −0.46±0.005 (deconvolved). Clearly the inference could be improved by also modelling the
heterogeneity of the bilayer since it is a source of variability.
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Figure 3. Analysis of bilayer experimental data (Fig. 1) comparing processed, but not de-
convolved data, with deconvolved data. A/E/I. CD58 image. B/F/J. Intensity histograms CD58
(green, background black). C/G/K. Intensity histogram ICAM1 (red, background black). D/H/L.
Inferred g1, g2 diagram. First row (A-D), processed but not deconvolved data, second row (E-H),
deconvolved, third row (I-L), deconvolved with enlarged PSF (20%). The g1, g2 plot is based on sep-
arate channel reconstructions, and the (mean) regression line inferred from joint analysis is shown
(black). The PSF was estimated by imaging fluorescent beads.
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5 Step potential model and PSF linearity

Our ability to detect a linear relationship between g1, g2 caused by size exclusion relies on interme-
diate membrane separations occuring in the image, i.e. intermediate fluorescence between maximal
enrichment (exclusion) and the background for CD58 (ICAM1 respectively). If the domain walls
are sub-light resolution and are homogeneous in their concentrations then this will not be the case.
Higher receptor/ligand concentrations reduce the level of fluctuations and thus the domain walls
will be sharper. This step potential model (with step changes in concentrations at domains) can be
analysed in considerable detail and aids understanding of the effect of the PSF. Further, we can ask
to what degree the PSF alone can produce g1, g2 patterns similar to those observed.

A B
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Figure 4. Schematic illustrating the effect of the PSF on fluorescence under a discrete valued
potential (concentration) model. A single domain wall at x = 0 is illustrated, A. intensity of red
and green fluorophores in absence of PSF, and B after PSF applied.

Here, we examine this Boolean (step) model, simulating the observed patterns for comparison
to the undeconvolved case in Fig. S3. Thus, domains are modelled as ’tight’ entities with uniform
complex and ICAM1 concentrations, ie within the synapse there are only two concentration states,
high ICAM1 (low CD58) and low ICAM1 (high CD58) with domain walls assumed sub-light mi-
croscopy resolution. Thus, intermediate fluorescence values arise through effects of the PSF alone,
Fig. S4. We simulate this using one of the synapse patterns observed in the bilayer experiments
and the measured PSF. By choosing the minimum and maximum concentrations of ICAM1 and
CD58 respectively, and optionally adding fluorescence noise (to match the free surface fluorescence
distribution), we can obtain an approximate match to the synapse fluorescence distribution. The
simulated fluorescence prior to PSF convolution (Fig. S5A) should be compared to the deconvolved
data of Fig. S3E, and the convolved simulation (Fig. S5B) with the original experimental image
data, Fig. S3A. As is clear, the PSF produces a small region of approximate linearity with gradi-
ent -0.466±0.005, close to that inferred on the original image. However, the corresponding g1, g2
patterns Fig. S5C, S3H, and S5D, S3D show distinct differences.
A B C D

Figure 5. Simulated image data and inferred g1, g2 plot for the step concentration model with
PSF. A. Thresholded image (CD58), white regions are regions of enriched CD58. B. Simulated
CD58 under PSF and added noise, C. Inferred g1, g2 diagram for thresholded image (with added
noise). D. Inferred g1, g2 diagram for simulated image under PSF.

The source of this linearity can be analysed analytically, and it’s dependencies determined.
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Firstly, we simplify the problem, analysing a 1D domain with a wall at x = 0, Fig. S4 and define the
two concentration states as (Cmax, Bmin) and (Cmin, Bmax). We have (mean) fluorescence, green
and red channels with PSFs Ψg/r respectively, at a distance x from the interface given by,

G(x) = α1µ1Cmaxe
−g21 = α1µ1(Cmax − Cmin)

∫ 0

−∞
Ψg(x− y)dy + α1µ1Cmin,

R(x) = α2µ2Bmaxe
−g22 = α2µ2(Bmax −Bmin)

∫ ∞
0

Ψr(x− y)dy + α2µ2Bmin (8)

Here we are only modelling the fluorescence from the complex; thus fluorescence from the unbound
ligand needs to be added.

For simplicity, assume that the PSFs for the red and green channels are identical (we readdress
this below). Then we deduce that the following relation holds,

G(x)
Cmax − Cmin

+
R(x)

Bmax −Bmin
= h = 1 +

Cmin
Cmax − Cmin

+
Bmin

Bmax −Bmin
(9)

since
∫∞
−∞Ψ(x− y)dy = 1. The required relation between g1, g2 now follows,

exp−g1(x)2

1− Cmin
/
Cmax

+
exp−g2(x)2

1−Bmin
/
Bmax

= h. (10)

Note that if g1 = 0 then e−g
2
2 = Bmin

/
Bmax as expected. Fluorescence, under a PSF, thus tracks

this curve, Fig. S6. Although derived for 1D, this analysis applies to both 2 and 3D since the
domains are sufficiently large relative to the PSF width that domain walls appear 1 dimensional.

We can now estimate the gradient. Since the synapse is dominated by the state with low ICAM,
this point dominates the 2D histogram, as seen in Fig. S3. The gradient is given by,

dg2
dg1

= −g1
g2
e−g

2
1+g22

1−Bmin
/
Bmax

1− Cmin
/
Cmax

(11)

Typically Cmin � Cmax, while Bmin
/
Bmax ≈ 0.2.
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Figure 6. PSF incurred correlation patterns on the exclusion energy diagram g1, g2. Black,
identical PSF for red and green channels, Eqn. (S10). Red, 20% increase in red PSF Gaussian
width, Eqn. (S12). Blue dot denotes dominant state and arrows the shift of pixel exclusion energies
under the PSF.

The effect of the PSF being wavelength dependent can also be examined. However, to do this we
need a functional form for the PSF. For simplicity we use a Gaussian, which is a good approximation
for the main peak of the Airy function. The relation Eqn. (S8) is now an error function,

G(x) = Cmaxe
−g21 =

1
2

(Cmax − Cmin)erfc(
x√

(2)σg
) + Cmin,

R(x) = Bmaxe
−g22 = (Bmax −Bmin)

(
1− 1

2
erfc(− x√

(2)σr
)

)
+Bmin (12)
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Thus, we can map out the g1g2 curve as a parametrised curve in x, Fig. S6. This demonstrates
that the functional form is continuously modified, i.e. there is structural stability. Thus, the 8%
difference in PSF widths will perturb the gradient only marginally. The effect is therefore negligible.

Finally, we can determine the fluorescence redistribution under this model, ie the degree of shift
of the fluorescence population along the contour of Fig. S6 due to the effects of the PSF. If P (x)
is the distribution of distances of pixels from a domain, we have P (G)dG = P (x)dx, which, using
Eqn (S11) gives the distribution P (G). The distribution P (x) is empirically Lx

/
A where Lx is the

length of the contours at a distance x from the closest domain. If the domain is circular of radius r,
Lx = (1 + x

r )L0. Domains are not isolated, which will decrease Lx at x > r, whilst domains are not
circular, or of constant size, suggesting P (x) will be roughly Gaussian with mean, sd on the scale of
the natural spatial scale of the domain structure (size, separation distance). This can be calculated
for the data in Fig. S5A.

Our analysis indicates that the PSF can produce a linear relation between g1, g2, Fig. S6,
the gradient being determined primarily from the position of the main fluorescence population,
Eqn. (S11). Qualitatively the patterns are similar, original image (not deconvolved) Fig. S3D
and reconstruction under step concentration model Fig. S5D, although the spread along the line
of regression is less pronounced in the latter. However, as demonstrated above, linearity between
g1, g2 remains after deconvolution, Fig. S3H, and distinctly different than the step model pattern,
Fig. S5C. Thus, although the PSF produces a linear relation between g1, g2, our analysis indicates
that it is not the sole source of this linearity.
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