(*Mitochondrial Deoxyribonucleoside Salvage Pathway*) (*Vishal V Gandhi and David C Samuels*) (*DeoxynucleotideModelConstants.txt*) (*This file is the constants file for the Mathematica*) (*mitochondrial deoxynucleotide metabolism and mtDNA*) (*synthesis model*) Lstrandstart=10969; (*the fractions of A,C,T, and G on the heavy and light strands of mtDNA*) fdTH=0.309; fdTL=0.247; fdCH=0.131; fdCL=0.313; fdAH=0.247; fdAL=0.309; fdGH=0.313; fdGL=0.131; (*the Hill coefficient of TK2 for thymidine*) tk2hill=0.5; (*The length of both strands of mtDNA*) DNAlength=33136; (*the length of one strand of mtDNA*) strandDNA=DNAlength/2; (*volume of a mitochondrion*) volmito=2*^-16; (*conversion factor used to convert kms and concentrations from microMolar to molecules/mitochondrion*) (*conversion = 120.4;*) conversion=1*^-6*6.022*^23*volmito; secondsperminute=60; (*factor used to decrease the vmax of the polymerase on double stranded templates with lower primer density*) dsfact=1/2; (*Polymerase kinetic constants Johnson 01 JBC*) VmaxPoldT=25.0*dsfact*secondsperminute; VmaxPoldC=43.0*dsfact*secondsperminute; VmaxPoldA=45.0*dsfact*secondsperminute; VmaxPoldG=37.0*dsfact*secondsperminute; KmPoldT=0.63*conversion; KmPoldC=0.9*conversion; KmPoldA=0.8*conversion; KmPoldG=0.8*conversion; (*Ki of dTTP on tk2 Wang 03 DOI 10.1074/jbc.M206143200*) kidttptk2=2.3*conversion; (*Ki of dUTP on tk2 Geometric mean of dCTP and dTTP values*) kidutptk2=1.38*conversion; (*Ki of dCTP on tk2 Wang 03 DOI 10.1074/jbc.M206143200*) kidctptk2=0.83*conversion; (*Ki of dU on tk2 Geometric mean Munch-Petersen 91 JBC*) kidutk2=227*conversion; (*Ki of dC on tk2 Wang 03 DOI 10.1074/jbc.M206143200*) kidctk2=40*conversion; (*Ki of dT on tk2 Wang 03 DOI 10.1074/jbc.M206143200*) kidttk2=4.9*conversion; (*Substrate Kis on dgk set equal to substrate kms*) (*Ki of dI on dgk set equal to km Sjoberg 98 Molecular Pharmacology*) kididgk=12*conversion; (*Sjoberg 01 DOI: 10.1128/AAC.45.3.739–742.2001, Ki of dITP on dgk set equal to dATP Ki*) kidimpdgk=78*conversion; kiditpdgk=kidatpdgk; (*Ki of dGMP on dgk Sjoberg 01 DOI: 10.1128/AAC.45.3.739–742.2001*) kidgmpdgk=4*conversion; (*Ki of dAMP on dgk Sjoberg 01 DOI: 10.1128/AAC.45.3.739–742.2001*) kidampdgk=28*conversion; (*Ki of dATP on dgk Sjoberg 01 DOI: 10.1128/AAC.45.3.739–742.2001*) kidatpdgk=41*conversion; (*Ki of dGTP on dgk Sjoberg 01 DOI: 10.1128/AAC.45.3.739–742.2001*) kidgtpdgk=0.4*conversion; (*estimated nucleoside transporter molecular weight in kD Griffiths 97 Nature Medicine assumed monomer?*) transporterMW=50; (*tk2 and dgk molecular weight in kD=29 Wang 99 Febs Letters, Mandel 01 doi:10.1038/ng746*) (*dgk is a dimer, tk2 exists both as dimer and tetramer: tetramer is more active but less abundant, transition between the 2 states is possible and ATP-mediated (mean taken)*) dgkMW=58; tk2MW=87; (*molecular weight of dnt2 in kD Rampazzo 00 PNAS Hunsucker 05 dimer = 2*23*) dnt2MW=46; (*Ectonucleotidase molecular weight Tetramer Brenda*) enMW=210; (*tmpk2 molecular weight in kD Chen 08 Genes to Cells*) tmpk2MW=44; (*gmpk2 molecular weight in kD Brenda*) gmpk2MW=22; (*cmpk2 molecular weight in kD Xu08 JBC*) cmpk2MW=44.5; (*ak2 molecular weight in kD Uniprot/other literature*) akMW=26; (*human nme4 molecular weight in kD=20 Uniprot/Milon 00, homohexamer*) ndpkMW=120; (*nucleoside kinase molecules in each mitochondrion from Saada 01 and 03 Nature Genetics and Mol Gen Metabolism*) (*as much as 20-fold variation may exist between tissues*) tk2moleculespermito=100; dgkmoleculespermito=200; (*dnt2 molecules in each mitochondrion*) dnt2moleculespermito=50; (*Ectonucleotidase molecules in each mitochondrion*) enmoleculespermito=50; (*tmpk2 molecules in each mitochondrion*) tmpk2moleculespermito=50; (*gmpk2 molecules in each mitochondrion*) gmpk2moleculespermito=50; (*cmpk2 molecules in each mitochondrion*) cmpk2moleculespermito=50; (*ndpk molecules in each mitochondrion*) ndpkmoleculespermito=300; (*the factor that the reverse reaction is faster than the forward reaction for NMPK*) factorMD=0.1;(*AMP/ADP*) (*the factor that the reverse reaction is faster than the forward reaction for NDPK*) factorDT=0.1;(*ADP/ATP*) (*ent molecules per mitochondrion Life Sciences Camins 96, Escubedo 00*) transportermoleculespermito=38; (*adenylate kinase molecules per mitochondrion Eur. J. Biochem. 93, 263 1979 Tomaselli*) akmoleculespermito=450; (*number of total proteins in a mitochondrion assuming average MW of 30 kD and 5x10^10 mito/mg mito protein*) (*proteinspermito=400000;*) (*transporter Vmax converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute refer base model constants, camins 95, jimenez 00*) transportervmax=0.000086/0.0000021*transportermoleculespermito; (*agreement between kcat from gerth 07 for tk2 at least and the Vmax values - so ok*) (*Vmax of the first phosphorylation of dT in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Wang 03 DOI 10.1074/jbc.M206143200*) Vmax1PfdT=1.288*tk2MW*tk2moleculespermito; (*Vmax of the first phosphorylation of dC in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Wang 03 DOI 10.1074/jbc.M206143200*) Vmax1PfdC=0.789*tk2MW*tk2moleculespermito; (*Vmax of dC with dgk converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Sjoberg 98 Molecular Pharmacology*) Vmax1PfdCdgk=0.059*dgkMW*dgkmoleculespermito; (*Vmax of the first phosphorylation of dA in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Sjoberg 98 Molecular Pharmacology*) Vmax1PfdA=0.429*dgkMW*dgkmoleculespermito; (*Vmax of the first phosphorylation of dG in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Sjoberg 98 Molecular Pharmacology*) Vmax1PfdG=0.043*dgkMW*dgkmoleculespermito; (*turnover numbers for cytosolic nucleotidases from Brenda seem to match Vmax below*) (*Vmax of the first phosphorylation of dT in the reverse direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Mazzon 03 Biochemical Pharmacology*) Vmax1PrdT=74*dnt2MW*dnt2moleculespermito; (*Various sources, Spychala 89 for Vmax 45 for AMP so setting lower here, also refer Hunsucker 05*) (*Ectonucleotidase Vmax of the first phosphorylation of dT in the reverse direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute*) Vmax1PrdTen=4.5*enMW*enmoleculespermito; (*Vmax of the first phosphorylation of dC in the reverse direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute*) Vmax1PrdC=4.5*enMW*enmoleculespermito; (*Vmax of the first phosphorylation of dA in the reverse direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute*) Vmax1PrdA=4.5*enMW*enmoleculespermito; (*Vmax of the first phosphorylation of dG in the reverse direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute*) Vmax1PrdG=4.5*enMW*enmoleculespermito; (*Vmax of the second phosphorylation of dT in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Brenda, also refer Pasti 03 Kcat value for cytoplasmic enzyme is 1 per second*) Vmax2PfdT=0.821*tmpk2MW*tmpk2moleculespermito; (*Vmax of the second phosphorylation of dC in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Xu 08 JBC*) Vmax2PfdC=1.77*cmpk2MW*cmpk2moleculespermito; (*Vmax of the second phosphorylation of dA in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Alexandre 07 Nucleic Acids Research*) Vmax2PfdA=272.8*akMW*akmoleculespermito; (*Vmax of the second phosphorylation of dG in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute from Brenda mouse and rat unreliable values* Hall 86 Eur J Biochem unreliable value*) Vmax2PfdG=1.54*gmpk2MW*gmpk2moleculespermito; (*Vmax of the second phosphorylation of dT in the reverse direction*) Vmax2PrdT=Vmax2PfdT*factorMD; (*Vmax of the second phosphorylation of dC in the reverse direction*) Vmax2PrdC=Vmax2PfdC*factorMD; (*Vmax of the second phosphorylation of dA in the reverse direction*) Vmax2PrdA=Vmax2PfdA*factorMD; (*Vmax of the second phosphorylation of dG in the reverse direction*) Vmax2PrdG=Vmax2PfdG*factorMD; (*Milon 00 human and Lambeth 97 pigeon both have data but Lambeth 97 has more, and there is overlap between dTDP values - so using Lambeth 97 for all nme4 data*) (*Vmax of the third phosphorylation of dT in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Lambeth 97 JBC*) Vmax3PfdT=140*ndpkMW*ndpkmoleculespermito; (*Vmax of the third phosphorylation of dC in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Lambeth 97 JBC*) Vmax3PfdC=50*ndpkMW*ndpkmoleculespermito;(*author statement: dNDPs are slower than rNDPs, so taking dCDP Vmax=CDP*) (*Vmax of the third phosphorylation of dA in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Milon 00 JBC*) Vmax3PfdA=225*ndpkMW*ndpkmoleculespermito;(*set equal to dGDP Vmax*) (*Vmax of the third phosphorylation of dG in the forward direction converting from micromoles substrate/mg enzyme/minute to molecules substrate/mitochondrion/minute Lambeth 97 JBC*) Vmax3PfdG=225*ndpkMW*ndpkmoleculespermito; (*Vmax of the third phosphorylation of dT in the reverse direction*) Vmax3PrdT=Vmax3PfdT*factorDT; (*Vmax of the third phosphorylation of dC in the reverse direction*) Vmax3PrdC=Vmax3PfdC*factorDT; (*Vmax of the third phosphorylation of dA in the reverse direction*) Vmax3PrdA=Vmax3PfdA*factorDT; (*Vmax of the third phosphorylation of dG in the reverse direction*) Vmax3PrdG=Vmax3PfdG*factorDT; (*transporter Km Escubedo 00*) transporterkm=2*conversion; (*Km of the first phosphorylation of dT in the forward direction Wang 03 DOI 10.1074/jbc.M206143200*) km1PfdT=13*conversion; (*Km of the first phosphorylation of dC in the forward direction Wang 03 DOI 10.1074/jbc.M206143200*) km1PfdC=11*conversion; (*Km of dC with dgk Sjoberg 98 Molecular Pharmacology*) km1PfdCdgk=336*conversion; (*Km of the first phosphorylation of dA in the forward direction Sjoberg 98 Molecular Pharmacology*) km1PfdA=467*conversion; (*Km of the first phosphorylation of dG in the forward direction Sjoberg 98 Molecular Pharmacology*) km1PfdG=4*conversion; (*Km of the first phosphorylation of dT, dU in the reverse direction Rampazzo 00 PNAS*) km1PrdT=200*conversion; km1PrdU=100*conversion; km1PrrU=1.5*km1PrdT; (*Ectonucleotidase data from Hunsucker 05 or Brenda*) (*Geometric means for substrate Kms, higher Kms plugged for inhibitions to be conservative*) (*Ectonucleotidase Km of the first phosphorylation of dT, dU, rU in the reverse direction*) km1PrdTen=22.5*conversion; km1PrdUen=110*conversion;(*set equal to UMP Km*) km1PrrUen=110*conversion;(*set equal to Km*) (*Ectonucleotidase Km of the first phosphorylation of dC, rC in the reverse direction*) km1PrdC=290*conversion; km1PrrC=360*conversion; (*Ectonucleotidase Km of the first phosphorylation of da, rA in the reverse direction*) km1PrdA=62*conversion; km1PrrA=19*conversion;(*set equal to Km*) kiadpen=17*conversion; kiatpen=15*conversion; (*Ectonucleotidase Km of the first phosphorylation of dG, rG in the reverse direction*) km1PrdG=48*conversion; km1PrrG=59*conversion;(*set equal to Km*) (*Ectonucleotidase Km of the first phosphorylation of dI, rI in the reverse direction*) km1PrdI=100*conversion;(*set equal to Km of IMP*) km1PrrI=100*conversion;(*set equal to Km*) (*Km of the second phosphorylation of dT in the forward direction Alexandre 07,misc*) km2PfdT=20*conversion; km2PfdUtmpk2=2600*conversion;(*Km is 170, but Ki is 2600*) (*miscellaneous inhibitions Brenda*) (*thymidine inhibition excluded because even at 770 uM only 27% inhibition observed*) kidttptmpk2=700*conversion; kidttmpk2=180*conversion; (*Km of the second phosphorylation of dC in the forward direction Xu 08*) km2PfdC=1310*conversion; km2PfrC=3090*conversion; km2PfrU=6300*conversion; km2PfdUcmpk2=100*conversion; (*Refer VanRompay 99 Molecular Pharmacology cmpk1 can phosphorylate AMP and dAMP*) km2PfrAcmpk2=km2PrrAcmpk2=km2PfdAcmpk2=km2PrdAcmpk2=100*500*conversion; (*km of CMP is 500 uM*) (*Km of the second phosphorylation of dA in the forward direction Alexandre 07 Nucleic Acids Research*) km2PfdA=210*conversion; km2PfrA=80*conversion;(*Km is 80, Ki is 500 - but this gives the incorrect impression that dAMP is a better substrate*) (*Refer Alexandre 07 Nucleic Acids Research 07 - CMP and UMP have some reactivity with ak2 - included as inhibitions*) km2PfrCak2=6000*conversion; km2PfrUak2=9000*conversion; (*Km of the second phosphorylation of dG in the forward direction, Brenda*) km2PfdG=112*conversion; km2PfrG=18*conversion; (*Km of the second phosphorylation of dT in the reverse direction*) km2PrdT=km2PfdT; km2PrdUtmpk2=km2PfdUtmpk2; (*Km of the second phosphorylation of dC in the reverse direction*) km2PrdC=km2PfdC; km2PrrC=km2PfrC; km2PrrU=km2PfrU; km2PrdUcmpk2=km2PfdUcmpk2; (*Km of the second phosphorylation of dA in the reverse direction*) km2PrdA=km2PfdA; km2PrrA=km2PfrA; km2PrrCak2=km2PfrCak2; km2PrrUak2=km2PfrUak2; (*Km of the second phosphorylation of dG in the reverse direction*) km2PrdG=km2PfdG; km2PrrG=km2PfrG; (*Reaction is linear for dTDP and UDP until at least 1000 uM Lambeth 97 JBC*) (*Km of the third phosphorylation of dT in the forward direction Lambeth 97 JBC*) km3PfdT=1000*conversion; km3PfdU=km3PfdT; km3PfrU=km3PfdT; (*Km of the third phosphorylation of dC in the forward direction Lambeth 97 JBC*) km3PfdC=1000*conversion;(*dNDPs are weaker substrates than rNDPs: author statement but data n/a so same value used*) km3PfrC=1000*conversion;(*Reaction linear until at least 1000 uM*) (*Km of the third phosphorylation of dA in the forward direction Lambeth 97 JBC*) km3PfdA=70*conversion;(*Km of ADP is about 70 uM OR Km of dADP set equal to that of dGDP*) km3PfrA=300*conversion;(*substrate inhibition, Ki*) (*Km of the third phosphorylation of dG in the forward direction Lambeth 97 JBC*) km3PfdG=75*conversion; km3PfrG=100*conversion;(*substrate inhibition,Ki*) (*inosine inhibitions*) km3PfrI=km3PrrI=km3PfdI=km3PrdI=1000*conversion; (*Km of the third phosphorylation of dT in the reverse direction*) km3PrdT=km3PfdT; km3PrdU=km3PrdT; km3PrrU=km3PrdT; (*Km of the third phosphorylation of dC in the reverse direction*) km3PrdC=km3PfdC; km3PrrC=km3PrdC; (*Km of the third phosphorylation of dA in the reverse direction*) km3PrdA=km3PfdA; km3PrrA=km3PrdA; (*Km of the third phosphorylation of dG in the reverse direction*) km3PrdG=km3PfdG; km3PrrG=km3PrdG; (*initial concentrations*) dTcyto=RandomReal[{0.05*conversion, 5*conversion}]; dCcyto=RandomReal[{0.05*conversion, 5*conversion}]; dAcyto=RandomReal[{0.05*conversion, 5*conversion}]; dGcyto=RandomReal[{0.05*conversion, 5*conversion}]; dT0=dTcyto; dC0=dCcyto; dA0=dAcyto; dG0=dGcyto; (*initial dNTP levels*) (*for transport model, have set these to be chosen randomly*) If[celltype==1,dTTPcyto=RandomReal[{0.1*conversion, 10*conversion}]]; If[celltype==1,dCTPcyto=RandomReal[{0.1*conversion, 10*conversion}]]; If[celltype==1,dATPcyto=RandomReal[{0.1*conversion, 10*conversion}]]; If[celltype==1,dGTPcyto=RandomReal[{0.1*conversion, 10*conversion}]]; dTMP0=RandomReal[{0.1*conversion, 10*conversion}]; dTDP0=RandomReal[{0.1*conversion, 10*conversion}]; dTTP0=dTTPcyto; dCMP0=RandomReal[{0.1*conversion, 10*conversion}]; dCDP0=RandomReal[{0.1*conversion, 10*conversion}]; dCTP0=dCTPcyto; dAMP0=RandomReal[{0.1*conversion, 10*conversion}]; dADP0=RandomReal[{0.1*conversion, 10*conversion}]; dATP0=dATPcyto; dGMP0=RandomReal[{0.1*conversion, 10*conversion}]; dGDP0=RandomReal[{0.1*conversion, 10*conversion}]; dGTP0=dGTPcyto; dU=dUcyto=dTcyto; rU=rUcyto=dTcyto; dI=dIcyto=0.1*dAcyto; rI=rIcyto=0.1*dAcyto; rC=rCcyto=dCcyto; rA=rAcyto=dAcyto; rG=rGcyto=dGcyto; dUMP=0.1*dTMP0; rUMP=10*dTMP0; dIMP=0.1*dAMP0; rIMP=0.1*dAMP0; rCMP=10*dCMP0; rAMP=10*dAMP0; rGMP=10*dGMP0; dUDP=0.1*dTDP0; rUDP=10*dTDP0; dIDP=0.1*dADP0; rIDP=0.1*dADP0; rCDP=10*dCDP0; rADP=10*dADP0; rGDP=10*dGDP0; dUTP=0.1*dTTP0; rUTP=10*dTTP0; dITP=0.1*dATP0; rITP=0.1*dATP0; rCTP=10*dCTP0; rATP=10*dATP0; rGTP=10*dGTP0; DNA0=0; LDNA0=0; HDNA0=0; (*end file*)