
1

Spatio-temporal credit assignment in neuronal population

learning.
Text S1: Relating the plasticity rule to a gradient ascent
procedure
Johannes Friedrich1, Robert Urbanczik2, Walter Senn3,∗

1,2,3 Department of Physiology, University of Bern, Bühlplatz 5, CH-3012 Bern,

Switzerland

∗ E-mail: senn@pyl.unibe.ch

We show how the plasticity rule presented in the main text is based on a gradient ascent procedure
maximizing the average reward rate. This Supplementary Material is organized as follows: First, a
formula is derived for the gradient, with respect to synaptic strength of the population neurons, for the
probability of taking a behavioral decision. We next summarize Baxter and Bartlett’s framework (Ref. [1]
main text) for learning in partially observable Markov decision processes (POMDP’s). Finally, we show
how our population gradient leads to a learning rule for POMDP’s and how this procedure, formulated
in discrete time, transforms to the simplified online plasticity rule presented in the main text.

1 Gradient for the behavioral decision

Let X be the spike pattern presented to the population neurons and W the matrix of their synaptic
strength. The probability PW(D|X) of responding with decision D to the stimulus is

PW(D|X) =

∫

dY P (D|A(Y))

N
∏

ν=1

PWν (Y ν |Xν) .

Here, the conditional probability of the decision, P (D|A), is given by Eq. (9, main text), the definition
of the activity A(Y) is given just above Eq. (9, main text). The probability PWν (Y ν |Xν) that neuron
ν produces the postsynaptic spike train Y ν in response to its version Xν of the stimulus is obtained by
applying Eq. (7, main text) to neuron ν.

We will only need the gradient of PW(D|X) for a single stimulus. So, ignoring the dependence on X,
we write

PW(D) =

∫

dY P (D|A(Y))

N
∏

ν=1

PWν (Y ν) . (1)

To lighten the notation further, we focus on calculating the gradient of PW(D) only with respect to
the strength of one of the synapses (the expressions for the other synapses being entirely analogous). Let
w denote the strength of the first synapse of the first population neuron and let Y = Y 1 the postsynaptic
spike train produced by this neuron. To isolate the contribution of the first neuron we decompose the
activity A(Y) as

A(Y) = 1√
N
c(Y) +A\(Y 2, . . . , Y N) with A\ =

1√
N

N
∑

ν=2

c(Y ν) .

As random variables, Y and A\ are independent, since the probability density on the postsynaptic
spike trains Y in Eq. (1) is given by a product. Further the density on Y 2, . . . , Y N induces a density µ
on A\, crucially µ does not depend on w. With this notation, we can rewrite (1) as

Pw(D) =

∫

dY dA\µ(A\) P
(

D | c(Y)√
N

+A\
)

Pw(Y) .

2

We now set

SP (D|A\) = 1
2

(

P (D | 1√
N

+A\) + P (D | −1√
N

+A\)
)

DP (D|A\) = 1
2

(

P (D | 1√
N

+A\)− P (D | −1√
N

+A\)
)

(2)

and have
P
(

D | c(Y)√
N

+A\
)

= SP (D|A\) + DP (D|A\)c(Y) .

Plugging this into the above expression for Pw(D) we obtain

Pw(D) =

∫

dA\µ(A\) SP
(

D|A\
)

+

∫

dY dA\µ(A\) DP
(

D|A\
)

c(Y) Pw(Y) .

Now, since the first integral does not depend on w, we have

∂
∂w

Pw(D) =

∫

dY dA\µ(A\) DP (D|A\) c(Y) ∂
∂w

Pw(Y) .

To bring this result into a form which is usable in the Monte Carlo sampling procedure below, we first
rewrite it as

∂
∂w

Pw(D) =

∫

dY dA\µ(A\) DP (D|A\) c(Y) ∂
∂w

Pw(Y)

=

∫

dY dA\µ(A\) P (D|A)DP(D|A\)
P (D|A) c(Y)Pw(Y)

∂
∂w

Pw(Y)

Pw(Y)

=

∫

dY dA\µ(A\)Pw(Y)P (D|A) DP(D|A\)
P (D|A) c(Y) ∂

∂w
lnPw(Y) ,

where from the second line on we have used A as shorthand for A = 1√
N
c(Y)+A\. The product of densities

the third line, µ(A\)Pw(Y)P (D|A), is just the joint density, µ(A\)Pw(Y)P (D|A) = Pw(D,A\, Y). For
the Monte Carlo procedure we decompose the joint density as Pw(D,A\, Y) = Pw(D)Pw(A

\, Y |D) to
obtain our final expression for the gradient

∂
∂w

Pw(D) = Pw(D)

∫

dY dA\Pw(A
\, Y |D)

DP(D|A\)
P (D|A) c(Y) ∂

∂w
lnPw(Y) (3)

2 Policy gradient learning in a POMPD

A partially observable Markov decision problem involves a finite number of states which we shall denote
by lower case bold symbols such as i or j. Each state is associated with a reward value R(i) which may
depend deterministically or stochastically on i. The behavior of the learning agent iteratively generates
a discrete time Markov process as follows. Assuming the process is in state i at discrete time step n− 1,
then:

• The agent makes an observation X(i), which may be partial and noisy, so it may be impossible to
uniquely identify the underlying state i based on X(i). As the notation suggests, X(i) corresponds
to the stimulus presented to our decision network.

• Based on the observation, the agent generates a control, according to an adaptable stochastic policy.
In our parlance, a control corresponds to a decision D, so the agent is described by Pw(D|X(i)),
where w is an adaptable parameter.

3

• On the next time step n, the process transitions to state j with probability pi→j(D), where D is
the decision just made by the agent.

• The agent receives reward R(j).

As a consequence of the decisions made, the agent thus receives a sequence of rewards R(jn), and the
goal of the agent is to maximize the long term average reward rate r(w). Formally

r(w) = lim
N→∞

1

N

〈

N
∑

n=1

R(jn)

〉

where the angle brackets denote the expectation over the stochastic process.
Before presenting the gradient rule for maximizing r(w), let us show how this framework applies to the

learning problems studied in the main text. As example we consider the stimulus response association
task when reward is delayed by ∆t = 650ms, i.e. a bit longer than the 500ms duration of a single
stimulus. Then, at the onset of the presentation of n-th stimulus, the Markovian state jn comprises the
following three elements:

jSn : The pure version of the n-th stimulus.

jc1n : A flag which is ±1 according to whether the decision in response to stimulus
n− 1 was correct.

jc2n : A ±1 flag according to whether the response to stimulus n− 2 was correct.

The partial observation X(jn) actually presented to the network is a jittered version of the stimulus
jSn . The reward R(jn), delivered 150ms into the presentation of stimulus n, is the value of jc2n . Once
the network has responded to stimulus n, the flag jc1n+1 in the next state jn+1 is set according to the
correctness of this response. Further, for jSn+1 a next stimulus is picked at random and, finally, the jc2n+1

flag is set from jn using jc2n+1 = jc1n .
Baxter and Bartlett consider the following eligibility trace computed while sampling the decision

process:

en+1 = (1− γ)en +
∂
∂w

Pw(Dn|X(jn))

Pw(Dn|X(jn))
(4)

Here 0 < γ < 1 is a discount factor and Dn is the decision actually made in the n-th time step. They
next introduce the reward weighted average of en,

gn =
1

n

n
∑

m=1

R(jm)em

and relate gn to the gradient of a suitable objective function which we denote by rγ(w). In more detail,
Baxter and Bartlett show that, under mild regularity conditions on the decision process

lim
n→∞

gn = ∂
∂w

rγ(w) with probability 1.

Of course, what we actually want to maximize is the average reward rate r(w) and the relationship to
the objective function is

lim
γ→0

rγ(w) = r(w) .

But to assure that gn has finite variance, we need to use a positive value of γ. So for the proposed
procedure there is a bias-variance tradeoff in choosing the discount factor γ. In a companion paper

4

(Ref. [2] main text), Baxter and Bartlett show that the above result leads to the following stochastic
gradient procedure for the online adaption of w:

wn − wn−1 = ηnR(jn)en

with positive learning rates ηn. Technically, to assure convergence, one has to assume that ηn is not fixed
in time but that it decays to 0 according to a suitable schedule. For biological systems this solution to
the stability-plasticity dilemma seems unrealistic and, below, we shall stick to a fixed learning rate.

3 Population learning for POMDP’s

To arrive at a first version of our population learning procedure we simply plug Eq. (3) in to Eq. (4)

en+1 = (1− γ)en +

∫

dY dA\Pw(A
\, Y |Dn,Xn)

DP(Dn|A\)
P (Dn|A) c(Y) ∂

∂w
lnPw(Y |Xn) . (5)

Here Xn is the stimulus presented at the n-th time step and in contrast to Eq. (3) we now make the
stimulus dependence explicit in the notation. The fixed learning rate update simply is

wn − wn−1 = ηRnen .

As it stands the above procedure is an unhappy compromise. The averaging over stimuli, decisions
and rewards is achieved by Monte-Carlo sampling during the evolution of the decision process, whereas
the averaging over the variables A\ and Y , internal to the decision network, is done separately for each
time step in Eq. (5). Since, conditioned on the decisions Dn, the evolution of the process is independent
of the internal variables, it is more natural to also leave the averaging over A\ and Y to the Monte-Carlo
procedure. This amounts to simply using

en+1 = (1− γ)en +
DP(Dn|A\

n
)

P (Dn|An)
c(Yn)

∂
∂w

lnPw(Yn|Xn) . (6)

instead of Eq. (5). In first instance, the sampling prescription for the decision process now is to pick

Dn from Pw(Dn|Xn) and then pick A
\
n as well as Yn from Pw(A

\
n, Yn|Dn,Xn). But this just amounts

to sampling the joint density Pw(Dn, A
\
n, Yn|Xn). The natural way to sample this joint density is to

have the population generate spike trains in response to the stimulus, use this to calculate A
\
n as well as

An = A
\
n + c(y)/

√
N , and then sample P (Dn|An).

The expression for en can be simplified by assuming that the population size N is large. We can then

replace the finite difference in DP
(

Dn|A\
n

)

, see Eq. 2, by a differential obtaining

DP
(

Dn|A\
n

)

= 1√
N

∂

∂A
\
n

P
(

Dn|A\
n

)

+O(1/N)

= 1√
N

∂
∂An

P (Dn|An) +O(1/N)

where in the last line we have used that the difference between A
\
n and An is O(1/

√
N). We use this for

simplifying (6) to

en+1 = (1− γ)en +O(1/N) +
(

∂
∂w

lnPw(Yn|Xn)
)

c(Yn)
1√
N

∂
∂An

lnP (Dn|An) . (7)

We can now compare this to the last eligibility trace E3 of the online cascade proposed in the main
text

τRĖ3 = −E3 + E2(t)post2(t)Dec(t)

5

and observe the following correspondences between the increment in E3 and in Eq. (7). As mentioned
in Methods, E2 is a low pass filtering approximation to ∂

∂w
lnPw(Yn|Xn) and post2(t) is the continuous

encoding of c(Yn). For the specific decision circuitry used, ∂
∂An

lnP (Dn|An) = Dn−tanh(An). The latter
term provides the modulation of the decision feedback Dec(t) given in Methods. For the online procedure,
the 1/

√
N factor in (7) is absorbed into the learning rate. Finally the discount factor γ corresponds to

the ratio of stimulus duration T to τR.

References

1. Baxter J, Bartlett P (2001) Infinite-horizon policy-gradient estimation. J Artif Intell Res 15: 319-
350.

2. Baxter J, Bartlett P, Weaver L (2001) Experiments with infinite-horizon, policy-gradient estimation.
J Artif Intell Res 15: 351-381.

