Text S1

Does the potential for chaos constrain the embryonic cell-cycle oscillator?

R. Scott McIsaac ${ }^{1,2, *}$, Kerwyn Casey Huang ${ }^{3, *}$, Anirvan Sengupta ${ }^{4,5}$, Ned S. Wingreen ${ }^{1,6, \dagger}$
${ }^{1}$ Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
${ }^{2}$ Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544
${ }^{3}$ Department of Bioengineering, Stanford University, Stanford, CA 94305
${ }^{4}$ Department of Physics \& Astronomy, Rutgers University, Piscataway, NJ 08854
${ }^{5}$ BioMAPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854
${ }^{6}$ Department of Molecular Biology, Princeton University, Princeton, NJ 08544
*These authors contributed equally to this work.
\dagger To whom correspondence should be addressed;
Department of Molecular Biology
119 Lewis Thomas Laboratory Princeton, NJ 08544 USA;
E-mail: wingreen@princeton.edu
Phone: (609)-258-8476

Cell-cycle model

The most current model of the embryonic cell cycle in X. laevis was derived by Pomerening et al. [1] In the current study, we extended this model to include a spatial component. Simulations were performed in 1D and 3D geometries, with all species able to diffuse.

At a qualitative level, oscillations in Cdk1 activity are driven by dual fast positive feedbacks and a slower negative feedback. The period of the oscillations is determined by the rate of cyclin B synthesis [2]. Cdk1 binds cyclin B (forming Cyclin B-Cdk1), and, upon activation, the active Cyclin B-Cdk1 complex phosphorylates the mitotic substrates that transition the cell from interphase to M-phase. The transition from M-phase back to interphase is driven by anaphase-promoting complex (APC)-mediated polyubiquitination of cyclin $\mathrm{B}[3,4,5]$.

In the Pomerening et al. [1] model, the dynamics of cyclin B and the phosphorylated/ dephosphorylated states of the Cyclin B-Cdk1 complex are explicitly modeled. Phosphorylation at Tyr-15 results in inactivation of the Cyclin B-Cdk1 complex; namely, Cyclin B-Cdk1-Yp and Cyclin B-Cdk1-YpTp (also phosphorylated at Thr-14) are inactive. The complex Cyclin B-Cdk1-Tp is phosphorylated at Thr-14 and lacks phosphorylation at Tyr15.

To achieve negative feedback, the presence of the complex Cyclin B-Cdk1-Tp results in activation of the polo-like kinase, Plx1 $\left.\right|_{\text {act }}$. Plx1 $\left.\right|_{\text {act }}$ then phosphorylates and activates the anaphase-promoting complex, APC $\left.\right|_{\text {act }}$, which destroys cyclins and Cyclin B-Cdk1 complexes. Dual positive feedbacks are achieved through the Cyclin B-Cdk1-Tp-mediated activation of the Tyr-15 phosphatase, Cdc25|act, and the Cyclin B-Cdk1-Tp-mediated inactivation of the Tyr-15 kinase Wee1|act.

Central parameters in the model include $k_{\text {synth }}$, the rate of cyclin B synthesis; $k_{\text {dest }}$, the rate at which active APC destroys cyclins; and r, the strength of the positive feedbacks. The active forms of Cdc 25 and Wee1 (Cdc $\left.25\right|_{\text {act }}$ and Wee1 $\left.\right|_{\text {act }}$) have phosphatase and kinase activities given by $k_{\text {cdc } 25}$ and $k_{\text {wee }}$, respectively. The basal activities of Cdc25 and Wee1 are $k_{\text {wee } 1} / r$ and $k_{\text {cdc25 }} / r$, where the parameter r is the fraction of phosphatase/kinase activity in interphase versus M-phase. When $r=1$, the model becomes negative-feedback-only.

$$
\begin{aligned}
& \frac{\partial[\text { Cyclin } \mathrm{B}]}{\partial t}=D \nabla^{2}[\operatorname{Cyclin} \mathrm{~B}] \\
& +k_{\text {synth }}-k_{\text {dest }}[\mathrm{APC}]_{\text {act }}[\operatorname{Cyclin} \mathrm{B}]-k_{a}\left([\mathrm{Cdk} 1]_{\text {tot }}\right. \\
& \text {-[Cyclin B-Cdk1] - [Cyclin B-Cdk1-Yp] } \\
& -[\text { Cyclin B-Cdk1-YpTp] - [Cyclin B-Cdk1-Tp]) [Cyclin B] } \\
& +k_{d}[\mathrm{Cyclin} \text { B-Cdk1] } \\
& \frac{\partial[\text { Cyclin B-Cdk1] }}{\partial t}=D \nabla^{2}[\text { Cyclin B-Cdk1 }] \\
& +k_{a}\left([\mathrm{Cdk} 1]_{\mathrm{tot}}-[\mathrm{Cyclin} \mathrm{~B}-\mathrm{Cdk} 1]-[\mathrm{Cyclin} \mathrm{~B}-\mathrm{Cdk} 1-\mathrm{Yp}]\right. \\
& -[C y c l i n ~ B-C d k 1-Y p T p]-[C y c l i n ~ B-C d k 1-T p]) ~[C y c l i n ~ B] ~ \\
& -k_{d}[\text { Cyclin B-Cdk1 }]-k_{\text {dest }}[\mathrm{APC}]_{\text {act }}[\mathrm{Cyclin} \mathrm{~B}-\mathrm{Cdk} 1]
\end{aligned}
$$

$$
\begin{aligned}
& -k_{\text {wee1 }}[\mathrm{Wee} 1]_{\text {act }}[\text { Cyclin B-Cdk1] } \\
& -k_{\text {wee1,basal }}\left([\mathrm{Wee} 1]_{\text {tot }}-[\mathrm{Wee} 1]_{\text {act }}\right) \text { [Cyclin B-Cdk1] } \\
& +k_{\mathrm{cdc} 25}[\mathrm{Cdc} 25]_{\text {act }}[\text { Cyclin B-Cdk1-Yp] } \\
& +k_{\text {cdc } 25, \text { basal }}\left([\mathrm{Cdc} 25]_{\mathrm{tot}}-[\mathrm{Cdc} 25]_{\mathrm{act}}\right) \text { [Cyclin B-Cdk1-Yp] } \\
& \frac{\partial[\text { Cyclin B-Cdk1-Yp] }}{\partial t}=D \nabla^{2}[\text { Cyclin B-Cdk1-Yp }] \\
& +k_{\text {wee1 }}[\mathrm{Wee} 1]_{\text {act }}[\text { Cyclin B-Cdk1] } \\
& +k_{\text {wee1,basal }}\left([\text { Wee1 }]_{\text {tot }}-[\text { Wee1 }]_{\text {act }}\right)[\text { Cyclin B-Cdk1] } \\
& -k_{\mathrm{cdc} 25}[\mathrm{Cdc} 25]_{\text {act }}[\text { Cyclin B-Cdk1-Yp] } \\
& -k_{\text {cdc25,basal }}\left([\mathrm{Cdc} 25]_{\text {tot }}-[\mathrm{Cdc} 25]_{\text {act }}\right) \text { [Cyclin B-Cdk1-Yp] } \\
& -k_{\text {cak }}\left[\text { Cyclin B-Cdk1-Yp] }+k_{\mathrm{pp2c}}[\text { Cyclin B-Cdk1-YpTp] }\right. \\
& -k_{\text {dest }}[\mathrm{APC}]_{\text {act }}[\mathrm{Cyclin} \text { B-Cdk1-Yp] } \\
& \frac{\partial[\mathrm{Cyclin} \mathrm{~B}-\mathrm{Cdk} 1-\mathrm{YpTp}]}{\partial t}=D \nabla^{2}[\text { Cyclin B-Cdk1-YpTp}] \\
& +k_{\text {cak }}\left[\text { Cyclin B-Cdk1-Yp] }-k_{\mathrm{pp} 2 \mathrm{c}}[\text { Cyclin B-Cdk1-YpTp] }\right. \\
& -k_{\text {cdc } 25}[\mathrm{Cdc} 25]_{\text {act }}[\mathrm{Cyclin} \text { B-Cdk1-YpTp] } \\
& -k_{\text {cdc25,basal }}\left([\mathrm{Cdc} 25]_{\text {tot }}-[\mathrm{Cdc} 25]_{\text {act }}\right)[\mathrm{Cyclin} \text { B-Cdk1-YpTp] } \\
& +k_{\text {wee1 }}[\mathrm{Wee} 1]_{\text {act }}[\text { Cyclin B-Cdk1-Tp] } \\
& +k_{\text {wee1,basal }}\left([\mathrm{Wee} 1]_{\text {tot }}-[\mathrm{Wee} 1]_{\text {act }}\right)[\text { Cyclin B-Cdk1-Tp] } \\
& -k_{\text {dest }}[A P C]_{\text {act }}[C y c l i n ~ B-C d k 1-Y p T p] \\
& \frac{\partial[\text { Cyclin B-Cdk1-Tp] }}{\partial t}=D \nabla^{2}[\text { Cyclin B-Cdk1-Tp }] \\
& +k_{\text {cdc } 25}[\mathrm{Cdc} 25]_{\text {act }}[\text { Cyclin B-Cdk1-YpTp] } \\
& +k_{\text {cdc25, basal }}\left([\mathrm{Cdc} 25]_{\text {tot }}-[\mathrm{Cdc} 25]_{\text {act }}\right)[\mathrm{Cyclin} \text { B-Cdk1-YpTp] } \\
& -k_{\text {wee1 }}[\mathrm{Wee} 1]_{\text {act }}[\text { Cyclin B-Cdk1-Tp] } \\
& -k_{\text {wee1,basal }}\left([\mathrm{Wee} 1]_{\text {tot }}-[\mathrm{Wee} 1]_{\text {act }}\right)[\text { Cyclin B-Cdk1-Tp] } \\
& -k_{\text {dest }}[\mathrm{APC}]_{\text {act }}[\mathrm{Cyclin} \text { B-Cdk1-Tp] } \\
& \frac{\partial[\mathrm{Cdc} 25]_{\mathrm{act}}}{\partial t}=D \nabla^{2}[\mathrm{Cdc} 25]_{\mathrm{act}} \\
& +k_{\mathrm{cdc} 25, \text { on }}\left(\frac{[\mathrm{Cyclin} \mathrm{~B}-\mathrm{Cdk} 1-\mathrm{Tp}]^{n}{ }_{\mathrm{cdc} 25}}{(E C 50)_{\mathrm{cdc} 25}^{n_{\mathrm{cdc} 25}}+[\mathrm{Cyclin} \mathrm{~B}-\mathrm{Cdk} 1-\mathrm{Tp}]^{n} \mathrm{cdc} 25}\right) \\
& \times\left([\mathrm{Cdc} 25]_{\mathrm{tot}}-[\mathrm{Cdc} 25]_{\mathrm{act}}\right)-k_{\mathrm{cdc} 25, \text { off }}[\mathrm{Cdc} 25]_{\text {act }} \\
& \frac{\partial[\mathrm{Wee} 1]_{\mathrm{act}}}{\partial t}=D \nabla^{2}[\mathrm{Wee} 1]_{\mathrm{act}} \\
& -k_{\text {wee1,off }}\left(\frac{[\text { Cyclin B-Cdk1-Tp }]^{n} n_{\text {wee1 }}}{(E C 50)_{\text {weee }}^{n_{\text {wee }}}+[\text { Cyclin B-Cdk1-Tp }]^{n} n_{\text {wee }}}\right) \\
& \times[\text { Wee1 }]_{\text {act }}+k_{\text {wee } 1, \text { on }}\left([\text { Wee1 }]_{\text {tot }}-[\text { Wee1 }]_{\text {act }}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial[\mathrm{Plx} 1]_{\mathrm{act}}}{\partial t}= & D \nabla^{2}[\mathrm{Plx} 1]_{\mathrm{act}} \\
& +k_{\mathrm{plx} 1, \mathrm{on}}\left(\frac{[\mathrm{Cyclin} \mathrm{~B}-\mathrm{Cdk} 1-\mathrm{Tp}]_{\mathrm{plx} 1}^{n_{\mathrm{p}}}}{(E C 50)_{\mathrm{plx} 1}^{n_{\mathrm{plx}}}+[\mathrm{Cyclin} \mathrm{~B}-\mathrm{Cdk} 1-\mathrm{Tp}]^{n_{\mathrm{plx} 1}}}\right) \\
& \times\left([\mathrm{Plx} 1]_{\mathrm{tot}}-[\mathrm{Plx} 1]_{\mathrm{act}}\right)-k_{\mathrm{plx} 1, \mathrm{off}}[\mathrm{Plx} 1]_{\mathrm{act}} \\
\frac{\partial[\mathrm{APC}]_{\mathrm{act}}}{\partial t}= & D \nabla^{2}[\mathrm{APC}]_{\mathrm{act}} \\
& +k_{\mathrm{APC}, \mathrm{on}}\left(\frac{[\mathrm{Plx} 1]_{\mathrm{act}}^{n_{\mathrm{APC}}}}{(E C 50)_{\mathrm{plx} 1}^{n_{\mathrm{APC}}}+[\mathrm{Plx} 1]_{\mathrm{act}}^{n_{\mathrm{APC}}}}\right) \\
& \times\left([\mathrm{APC}]_{\mathrm{tot}}-[\mathrm{APC}]_{\mathrm{act}}\right)-k_{\mathrm{APC}, \mathrm{off}}[\mathrm{APC}]_{\mathrm{act}}
\end{aligned}
$$

In our simulations, each of the densities ([Cyclin B], [Cyclin B-Cdk1], [Cyclin B-Cdk1-Yp], $\left.\left[\text { Cyclin B-Cdk1-YpTp], [Cyclin B-Cdk1-Tp], [Cdc25] }{ }_{\text {act }} \text {, [Wee1 }\right]_{\text {act }},[\mathrm{Plx} 1]_{\text {act }},[\mathrm{APC}]_{\text {act }}\right)$ are functions of both space and time. For the parameters, all concentrations are in arbitrary units (au), all times are in sec, and all rates are either in $(\mathrm{sec})^{-1}$ or $(\mathrm{au} \times \mathrm{sec})^{-1}$. Except where noted, the parameters are as follows:

$$
\begin{aligned}
k_{\text {synth }} & =0.02 \\
r & =10 \\
D & =0.001 \\
k_{\text {dest }} & =0.01 \\
k_{a} & =0.1 \\
k_{d} & =0.001 \\
k_{\text {wee1 }} & =0.05 \\
k_{\text {wee1,basal }} & =k_{\text {wee1 }} / r \\
k_{\text {cdc25 }} & =0.1 \\
k_{\mathrm{cdc} 25, \text { basal }} & =k_{\mathrm{cdc} 25} / r \\
{[\mathrm{Cyclin}]_{\mathrm{tot}} } & =230 \\
{[\mathrm{Cdc} 25]_{\mathrm{tot}} } & =15 \\
{[\mathrm{Wee} 1]_{\mathrm{tot}} } & =15 \\
{[\mathrm{APC}]_{\mathrm{tot}} } & =50 \\
{[\mathrm{Plx} 1]_{\mathrm{tot}} } & =50 \\
n_{\mathrm{wee} 1} & =4 \\
n_{\mathrm{cdc} 25} & =4 \\
n_{\mathrm{APC}} & =4 \\
n_{\mathrm{plx} 1} & =4 \\
(E C 50)_{\mathrm{plx} 1} & =40
\end{aligned}
$$

$$
\begin{aligned}
(E C 50)_{\mathrm{wee} 1} & =40 \\
(E C 50)_{\mathrm{cdc} 25} & =40 \\
\mathrm{APC} & =40 \\
k_{\mathrm{cdc} 25, \mathrm{on}} & =1.75 \\
k_{\mathrm{cdc} 25, \mathrm{off}} & =0.2 \\
k_{\mathrm{APC}, \mathrm{on}} & =1 \\
k_{\mathrm{APC}, \mathrm{off}} & =0.15 \\
k_{\mathrm{plx} 1, \mathrm{on}} & =1 \\
k_{\mathrm{plx} 1, \mathrm{off}} & =0.15 \\
k_{\mathrm{wee} 1, \mathrm{on}} & =0.2 \\
k_{\mathrm{wee} 1, \mathrm{off}} & =1.75 \\
k_{\mathrm{cak}} & =0.8 \\
k_{\mathrm{pp} 2 \mathrm{c}} & =0.008
\end{aligned}
$$

Besides APC, the cell-cycle proteins have very similar molecular weights (listed below). Treating proteins as spheres, the radius of the protein r scales as $M^{1 / 3}$, where M is the mass of the protein. From the Stokes-Einstein relation, the diffusion constant (D) in low Reynolds number liquids scales as r^{-1}. Based on the Stokes-Einstein relation, a two-fold increase in the mass of the protein reduces D by 20%, and a five-fold increase in the protein mass reduces D by 40%. Thus, we set all diffusion constants to be equal and within the range of in vivo measurements for our simulations. We also note that D can be affected by specific or non-specific in vivo interactions.

Table S1: Molecular weights of cell-cycle proteins

Species	MW (kDa)
Cyclin B-Cdk1	79.4
Wee1	67
Cdc25	60.3
Plx1	68.13
Cyclin B	44.92
Cdk1	34.52
APC	300

References

[1] Pomerening J. R., Kim S. Y., and Ferrell J.E. (2005) Systems-level Dissection of the Cell Cycle Oscillator: Bypassing Positive Feedback Produces Damped Oscillations. Cell 122 565-578.
[2] Hartley R. S., Rempel R. E., and Maller J.L. (1996) In vivo regulation of the early embryonic cell cycle in Xenopus. Developmental Biology 173 408-419.
[3] Hershko A., Ganoth D., Sudakin V., Dahan A., Cohen L.H., et al. (1994) Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2. Journal of Biological Chemistry 269 4940-4946.
[4] King R.W., Peters J., Tugendreich S., Rolfe M., Hieter P., et al. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell, 81 279-288.
[5] Peters J.M. (2002) The anaphase-promoting complex: Proteolysis in mitosis and beyond. Molecular Cell 9 931-943.

