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Does the potential for chaos constrain the embryonic cell-cycle oscillator?
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Cell-cycle model

The most current model of the embryonic cell cycle in X. laevis was derived by Pomerening
et al. [1] In the current study, we extended this model to include a spatial component.
Simulations were performed in 1D and 3D geometries, with all species able to diffuse.

At a qualitative level, oscillations in Cdk1 activity are driven by dual fast positive feed-
backs and a slower negative feedback. The period of the oscillations is determined by the
rate of cyclin B synthesis [2]. Cdk1 binds cyclin B (forming Cyclin B-Cdk1), and, upon
activation, the active Cyclin B-Cdk1 complex phosphorylates the mitotic substrates that
transition the cell from interphase to M-phase. The transition from M-phase back to in-
terphase is driven by anaphase-promoting complex (APC)-mediated polyubiquitination of
cyclin B [3, 4, 5].

In the Pomerening et al. [1] model, the dynamics of cyclin B and the phosphorylated/
dephosphorylated states of the Cyclin B-Cdk1 complex are explicitly modeled. Phospho-
rylation at Tyr-15 results in inactivation of the Cyclin B-Cdk1 complex; namely, Cyclin
B-Cdk1-Yp and Cyclin B-Cdk1-YpTp (also phosphorylated at Thr-14) are inactive. The
complex Cyclin B-Cdk1-Tp is phosphorylated at Thr-14 and lacks phosphorylation at Tyr-
15.

To achieve negative feedback, the presence of the complex Cyclin B-Cdk1-Tp results
in activation of the polo-like kinase, Plx1|act. Plx1|act then phosphorylates and activates
the anaphase-promoting complex, APC|act, which destroys cyclins and Cyclin B-Cdk1 com-
plexes. Dual positive feedbacks are achieved through the Cyclin B-Cdk1-Tp-mediated activa-
tion of the Tyr-15 phosphatase, Cdc25|act, and the Cyclin B-Cdk1-Tp-mediated inactivation
of the Tyr-15 kinase Wee1|act.

Central parameters in the model include ksynth, the rate of cyclin B synthesis; kdest, the
rate at which active APC destroys cyclins; and r, the strength of the positive feedbacks.
The active forms of Cdc25 and Wee1 (Cdc25|act and Wee1|act) have phosphatase and kinase
activities given by kcdc25 and kwee1, respectively. The basal activities of Cdc25 and Wee1 are
kwee1/r and kcdc25/r, where the parameter r is the fraction of phosphatase/kinase activity
in interphase versus M-phase. When r = 1, the model becomes negative-feedback-only.

∂[Cyclin B]

∂t
= D∇2[Cyclin B]

+ksynth − kdest[APC]act[Cyclin B]− ka ([Cdk1]tot

−[Cyclin B-Cdk1]− [Cyclin B-Cdk1-Yp]

−[Cyclin B-Cdk1-YpTp]− [Cyclin B-Cdk1-Tp]) [Cyclin B]

+kd[Cyclin B-Cdk1]

∂[Cyclin B-Cdk1]

∂t
= D∇2[Cyclin B-Cdk1]

+ka ([Cdk1]tot − [Cyclin B-Cdk1]− [Cyclin B-Cdk1-Yp]

−[Cyclin B-Cdk1-YpTp]− [Cyclin B-Cdk1-Tp]) [Cyclin B]

−kd[Cyclin B-Cdk1]− kdest[APC]act[Cyclin B-Cdk1]
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−kwee1[Wee1]act[Cyclin B-Cdk1]

−kwee1,basal ([Wee1]tot − [Wee1]act) [Cyclin B-Cdk1]

+kcdc25[Cdc25]act[Cyclin B-Cdk1-Yp]

+kcdc25,basal ([Cdc25]tot − [Cdc25]act) [Cyclin B-Cdk1-Yp]

∂[Cyclin B-Cdk1-Yp]

∂t
= D∇2[Cyclin B-Cdk1-Yp]

+kwee1[Wee1]act[Cyclin B-Cdk1]

+kwee1,basal ([Wee1]tot − [Wee1]act) [Cyclin B-Cdk1]

−kcdc25[Cdc25]act[Cyclin B-Cdk1-Yp]

−kcdc25,basal ([Cdc25]tot − [Cdc25]act) [Cyclin B-Cdk1-Yp]

−kcak[Cyclin B-Cdk1-Yp] + kpp2c[Cyclin B-Cdk1-YpTp]

−kdest[APC]act[Cyclin B-Cdk1-Yp]

∂[Cyclin B-Cdk1-YpTp]

∂t
= D∇2[Cyclin B-Cdk1-YpTp]

+kcak[Cyclin B-Cdk1-Yp]− kpp2c[Cyclin B-Cdk1-YpTp]

−kcdc25[Cdc25]act[Cyclin B-Cdk1-YpTp]

−kcdc25,basal ([Cdc25]tot − [Cdc25]act) [Cyclin B-Cdk1-YpTp]

+kwee1[Wee1]act[Cyclin B-Cdk1-Tp]

+kwee1,basal ([Wee1]tot − [Wee1]act) [Cyclin B-Cdk1-Tp]

−kdest[APC]act[Cyclin B-Cdk1-YpTp]

∂[Cyclin B-Cdk1-Tp]

∂t
= D∇2[Cyclin B-Cdk1-Tp]

+kcdc25[Cdc25]act[Cyclin B-Cdk1-YpTp]

+kcdc25,basal ([Cdc25]tot − [Cdc25]act) [Cyclin B-Cdk1-YpTp]

−kwee1[Wee1]act[Cyclin B-Cdk1-Tp]

−kwee1,basal ([Wee1]tot − [Wee1]act) [Cyclin B-Cdk1-Tp]

−kdest[APC]act[Cyclin B-Cdk1-Tp]

∂[Cdc25]act

∂t
= D∇2[Cdc25]act

+kcdc25,on

(
[Cyclin B-Cdk1-Tp]ncdc25

(EC50)
ncdc25
cdc25 + [Cyclin B-Cdk1-Tp]ncdc25

)
× ([Cdc25]tot − [Cdc25]act)− kcdc25,off[Cdc25]act

∂[Wee1]act

∂t
= D∇2[Wee1]act

−kwee1,off

(
[Cyclin B-Cdk1-Tp]nwee1

(EC50)
nwee1
wee1 + [Cyclin B-Cdk1-Tp]nwee1

)
×[Wee1]act + kwee1,on ([Wee1]tot − [Wee1]act)
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∂[Plx1]act

∂t
= D∇2[Plx1]act

+kplx1,on

 [Cyclin B-Cdk1-Tp]nplx1

(EC50)
nplx1

plx1 + [Cyclin B-Cdk1-Tp]nplx1


× ([Plx1]tot − [Plx1]act)− kplx1,off[Plx1]act

∂[APC]act

∂t
= D∇2[APC]act

+kAPC,on

(
[Plx1]

nAPC
act

(EC50)
nAPC
plx1 + [Plx1]

nAPC
act

)
× ([APC]tot − [APC]act)− kAPC,off[APC]act

In our simulations, each of the densities ([Cyclin B], [Cyclin B-Cdk1], [Cyclin B-Cdk1-Yp],
[Cyclin B-Cdk1-YpTp], [Cyclin B-Cdk1-Tp], [Cdc25]act, [Wee1]act, [Plx1]act, [APC]act) are
functions of both space and time. For the parameters, all concentrations are in arbitrary
units (au), all times are in sec, and all rates are either in (sec)−1 or (au × sec)−1. Except
where noted, the parameters are as follows:

ksynth = 0.02

r = 10

D = 0.001

kdest = 0.01

ka = 0.1

kd = 0.001

kwee1 = 0.05

kwee1,basal = kwee1/r

kcdc25 = 0.1

kcdc25,basal = kcdc25/r

[Cyclin]tot = 230

[Cdc25]tot = 15

[Wee1]tot = 15

[APC]tot = 50

[Plx1]tot = 50

nwee1 = 4

ncdc25 = 4

nAPC = 4

nplx1 = 4

(EC50)plx1 = 40
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(EC50)wee1 = 40

(EC50)cdc25 = 40

APC = 40

kcdc25,on = 1.75

kcdc25,off = 0.2

kAPC,on = 1

kAPC,off = 0.15

kplx1,on = 1

kplx1,off = 0.15

kwee1,on = 0.2

kwee1,off = 1.75

kcak = 0.8

kpp2c = 0.008

Besides APC, the cell-cycle proteins have very similar molecular weights (listed below).
Treating proteins as spheres, the radius of the protein r scales as M1/3, where M is the
mass of the protein. From the Stokes-Einstein relation, the diffusion constant (D) in low
Reynolds number liquids scales as r−1. Based on the Stokes-Einstein relation, a two-fold
increase in the mass of the protein reduces D by 20%, and a five-fold increase in the protein
mass reduces D by 40%. Thus, we set all diffusion constants to be equal and within the
range of in vivo measurements for our simulations. We also note that D can be affected by
specific or non-specific in vivo interactions.

Table S1: Molecular weights of cell-cycle proteins

Species MW (kDa)
Cyclin B-Cdk1 79.4

Wee1 67
Cdc25 60.3
Plx1 68.13

Cyclin B 44.92
Cdk1 34.52
APC 300
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