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1 Parameters Used to Generate Data

Equation (2) in Methods section used to generated simulated data is copied here again,

fzj (y) =

∞∑
h=1

πhg(y; Θhzj , τh), (1)

where g(·) is a parametric kernel (e.g., Gaussian), πh is a mixture weight on component h, τh is a precision
parameter specific to mixture component h, and Θhzj are location parameters specific to mixture component
h, interaction status z, and score type j. The parameters are listed in the following table.

Table 1: The parameters used to generate the simulated datasets. The mathematical expression is given by
Equation (2) in Materials and Methods section.

Data Sources
h=1 h=2 h=3

π1 (Θ, τ−1) π2 (Θ, τ−1) π3 (Θ, τ−1)

j=1
z=1 0.2 (5,1) 0.3 (7,2.25) 0.5 (10,4)
z=0 0.2 (2,16) 0.3 (4,9) 0.5 (4,4)

j=2
z=1 0.1 (4,0.25) 0.3 (6,1) 0.6 (7,2.25)
z=0 0.1 (3,9) 0.3 (4,2.25) 0.6 (2,1)

j=3
z=1 0.1 (60,1) 0.2 (65,9) 0.7 (70,25)
z=0 0.1 (55,100) 0.2 (50,25) 0.7 (58,9)

j=4
z=1 0.2 (10,1) 0.6 (15,4) 0.2 (20,9)
z=0 0.2 (8,49) 0.6 (5,16) 0.2 (7,4)

2 Posterior Computation

We propose a blocked Gibbs sampler for posterior computation [1]. This approach can be used for estimation
of the posterior probability of zi = 1 for i = 1, . . . , n, which provides an easy-to-interpret weight of evidence of
an interaction between proteins, fully accommodating uncertainty in the model specification and borrowing
information across different data. The blocked Gibbs sampler iterates between the following steps after
choosing initial values,
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1. Update zi by sampling from the Bernoulli full conditional posterior distribution, Pr(zi = 1 | −), for
i = 1, . . . , n,

ψ

p∏
j=1

N(yij ; ΘSij1j , τ
−1
Sijj

)

ψ

p∏
j=1

N(yij ; ΘSij1j , τ
−1
Sijj

) + (1− ψ)

p∏
j=1

N(yij ; ΘSij0j , τ
−1
Sijj

)

.

2. Update ψ from a beta conditional posterior distribution,

Beta

(
1 +

n∑
i=1

zi, 1 +

n∑
i=1

(1− zi)
)
.

3. Update Sij ∈ {1, . . . , T}, the allocation of observation yij to mixture component {1, . . . , T}, from
a multinomial conditional posterior distribution. Here, the infinite summation in Equation (1) is
truncated to the first T terms by letting VT = 1, following the theoretical justification of [1].

Pr(Sij = h | −) =
πhN(yij ; Θhzij , τ

−1
hj )

T∑
l=1

πlN(yij ; Θlzij , τ
−1
lj )

, h = 1, . . . , T.

4. Update Vh for h = 1, . . . , T − 1 from a beta full conditional posterior distribution,

Beta

(
1 +

n∑
i=1

p∑
j=1

1(Sij = h), α+

n∑
i=1

p∑
j=1

1(Sij > h)

)
.

5. Update Θh0j , for h = 1, . . . , T and j = 1, . . . , p, from a normal conditional posterior N(Eh0j , Vh0j),
with

Eh0j = Vh0j

{
µjγj + τhj

n∑
i=1

1(Sij = h)(yij − zi∆hj)

}
,

Vh0j =

{
γj + τhj

n∑
i=1

1(Sij = h)

}−1
.

6. Update ∆hj , for h = 1, . . . , T and j = 1, . . . , p, from N+(Eh1j , Vh1j) with

Eh1j = Vh1j

{
τhj

n∑
i=1

1(Sij = h)zi(yij −Θh0j)

}
,

Vh1j =

{
κj + τhj

n∑
i=1

1(Sij = h)zi

}−1
.

7. Update τhj , for h = 1, . . . , T and j = 1, . . . , p, from

Ga

(
aτ +

1

2

n∑
i=1

1(Sij = 1), bτ +
1

2

∑
i:Sij=1

(yij −Θh1j)
2

)
.
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Each of these steps involves sampling from standard distributions, and hence the implementation is quite
simple and efficient. The samples converge to a stationary distribution that is the joint posterior distribution
of the unknowns. Our focus is on inference on the protein interactions based on the marginal posterior
probabilities of zi = 1, which can be calculated using a Rao-Blackwellized approach. In particular, discarding
a burn-in to allow convergence, we average the conditional posterior probabilities in step 1 for each i across a
large number of MCMC iterations. Under 0-1 loss, the Bayes optimal classification rule sets ẑi = 1(ψ̂i > 0.5),

where ψ̂i is the estimated posterior probability of zi = 1. We recommend collecting 5,000 iterations, with
the first 1,000 iterations discarded as a default.

3 Gold Standard Datasets

We obtained the gold positive (GP) dataset by downloading the data from Human Protein Reference Dataset
(HPRD) (http://www.hprd.org) (Prasad et al. 2009 [2]; Mishra et al. 2006 [3]; Peri et al. 2003 [4]). We
downloaded 37107 protein protein interaction pairs with 9463 proteins from HPRD in Release 7, June
29, 2010. We had 8328 proteins and 31864 interaction pairs left after removing the duplicate and self-
interactions, and they therefore composed our gold positive (GN) dataset. We composed the gold standard
negative dataset by downloading the data from Gene Ontology Consortium (http://www.geneontology.org)
(The Gene Ontology Consortium 2000 [5]; Harris et al. 2004 [6]). For all the protein pairs, one protein
was assigned to the plasma membrane cellular component (749 proteins), and the other was assigned to
the nucleus cellular component (1054 proteins). A few proteins that were assigned in both were removed,
although we expect the proteins assigned to the plasma membrane cellular component can seldom interact
with the ones assigned to the nucleus cellular component.
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