
Text S1. 

 

Model Merging 

 

Let us formalize the question as follows: Given a network N with component set C and statement 

set S, and let a subset of components K of C be given. We ask “Is there a network N' on the set of 

components K with statement set S' so that every feasible solution in N' can be extended to a 

feasible solution in N?” (Q1). To verify a solution to (Q1) one needs to check whether for a given 

network N' these requirements are fulfilled, but this problem is in general provably hard (Π 2
P

-

complete) [1]. Furthermore, the computation of N' is difficult as it requires the computation of the 

logical projection of a system onto the set of components K, which may be exponential in the 

number of components [2]. It may be the case that the projection no longer has the form we 

required for a logical signaling network, namely that all statements are in IFF-form. In fact, it could 

be that no formulation with IFF-clauses on the set of statements K is possible. If we consider the 

artificial network that consists only of the IFF-clause cAMP OR RSK ↔CREB, a projection onto 

cAMP and CREB leads to the implication cAMP → CREB. But assuming the slightly bigger 

network that contains the formulas cAMP OR RSK ↔ CREB, ERK ↔ RSK, the projection of RSK 

leads to the IFF-clause cAMP OR ERK ↔ CREB. For computational purposes this is not of 

importance, but for purposes of visualization and examination by biological experts arbitrary logical 

formulas are unsuitable. We therefore relax the question to the following: “What is a minimal set of 

components K' which contains K, so that a set of IFF-statements S' exists such that every feasible 

solution of this network can be extended to a solution of N in this network?” (Q2) Clearly, K' can be 

chosen equal to C, so we know a trivial upper boundary. Hence, if we can check whether a 

projection can be written in IFF-form, we can solve (Q2) as a monotone generation problem [3]. A 

survey of these can be found in [4]. 

 

Complexity of Signaling Network Projection 
 

Definition: (polynomial hierarchy) 

The polynomial hierarchy is defined as 

Σ 0
P :=Π0

P :=P ; Σ k+1
P :=NPΣ k

P

; Π k+1
P :=co− Σ k+1

P
, 

where Σ k+1
P

 is the class of all problems which can be decided non-deterministically in polynomial 

time with the help of an oracle for a problem in Σ k
P

, i.e. given a certificate for the positive answer 

to an instance of a problem in Σ k+1
P

, it can be verified in polynomial time using an oracle for a 
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problem in Σ k
P

. The class Π k+1
P

 contains all decision problems whose complements are in Σ k+1
P

. 

For instance, Σ 1
P =NP  and Π 1

P =co− NP . See [5] for more details. 

 

Proposition: The verification of a given projection N' is Π 2
P

-complete. 

Proof: Let N  be an IFFSAT instance representing a signaling network and K  its components. To 

verify that a given N'  is a projection of N  onto a subset of components K'�K  the answer to 

the following decision problem must be YES: 

 

{ }| | ( ) { }| | ( )( )yx,NyxN'x K'KK' 0,1↔0,1 ∈∃∈∀     (1) 

 

where we denote by ( )xF  the truth value of a formula F  for a given truth assignment x . To show 

that (1) is in Π 2
P

, we have to argue that the check whether a given polynomial size certificate is a 

counterexample can be done in polynomial time using an NP  oracle. To see this, we take x  as the 

certificate. Whenever ( )xN'  evaluates to FALSE, it is to check whether there exists y  such that 

( yx,N )  is TRUE, which is the classical SAT problem and therefore NP -complete. Thus, given a 

SAT oracle, the counterexample is verified in polynomial time. If ( )xN'  evaluates to TRUE, it is to 

check whether for all y  ( yx,N )evaluates to FALSE, which is equivalent to a NO answer to SAT. 

Hence, given a SAT oracle, we can test the counterexample in polynomial time and therefore (1) is 

in PΠ2 . 

 

It remains to argue that (1) is also complete in PΠ2 . We transform the following prototypical PΠ2 -

complete problem to our instance. 

 

{ } { } ( )yx,Fyx nk 0,10,1 ∈∃∈∀   (2) 

 

where ( yx,F )  is in IFFSAT form. (IFFSAT form can be assumed since IFFSAT was shown to be 

NP -complete by reduction from 3-SAT [6]). Now we choose F  to be N  and N'  to be 

{xi↔x i}  for some component ix  of x . This is a tautology and thus ( )xN'  is always TRUE. Thus, 

we can formulate (2) equivalently as 

 
{ } ( ) { } ( )( )yx,NyxN'x nk 0,1↔0,1 ∈∃∈∀  
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which completes the proof. 
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