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Figure S1

[image: image1.emf]Cortex

STN

GPe

Striatum

EPN

Thalamus

1.

2.

3.

4.

5.

Cortex Cortex

STN

GPe GPe

Striatum Striatum

EPN EPN

Thalamus Thalamus

1.

2.

3.

4.

5.


	 
	Change in PD
	Predicted nature

	1.
	Increased strength (c)
	Permissive of beta statea

	2-4.
	Increased potency (
[image: image2.wmf]B

A

d

d

,

/

l

b

) 
	Promotes betab

	5.
	Decreased strength (c)
	Compensatoryb


	a Therapeutic suppression might prevent plastic re-organisation & Parkinsonian state

b Therapeutic suppression might alleviate established parkinsonism


Figure S1 Overview: Therapeutic Target, Schematic summary of network changes in PD
Basic model as in Fig 1, but with changes in strength of effective connectivity (c) shown by altered arrow width and changes in the potency of such connectivity (
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) highlighted by red zig-zag arrows.
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Table S1 Priors

Priors for model parameters including the observation model and neuronal sources. To ensure positivity, we estimate the log of these parameters under Gaussian priors on their log-scaling. This is equivalent to adopting a log-normal prior on the constants per se, where the parameter is 
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 is the prior expectation and 
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 is its log-normal dispersion (David et al., 2005).
Figure S2
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Figure S2 Model Comparison

Here we show the results of a fixed effects model comparison (Stephan et al., 2009) for Control and Parkinsonian animals. Bayesian model comparison, using the approximate model evidence allows us to compare competing hypotheses about the neural architecture generating the data. For each animal, we inverted or fit the data using three models. This inversion estimates a lower bound on the log model evidence, known as the free energy, it accounts for both the accuracy of fit and complexity of each model. Model 1 comprised the “standard” Basal-Ganglia-Thalamocortical re-entrant pathways described in the main text. Model 2 comprised this “standard” architecture and a new connection from GPe to EPN. Model 3 comprised the “standard” architecture and a new connection from GPe to striatum. Here we show there is very strong evidence in favour of Model 1, with a Group Bayes Factor (GBF1,2) > 150  (i.e. >99% probability, Penny et al., 2004) for Model 1 relative to the next best performing model (Model 2). For the Control animals the log Bayes factor (illustrated) logGBF1,2 = 167.02 and for the Parkinsonian animals logGBF1,2 = 20.10. 
Figure S3
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Figure S3 Predicted Gamma

We examined the frequency structure produced by model inversion using pole zero plots (Fig. 5B). The frequency structure was produced by the modulation transfer function, found using only data from 10 – 35 Hz. In the case of the control animals, the model predicted increased gamma output. We hence examined the frequency content of the original data from each animal over 40 – 80 Hz and found the predicted gamma peak in control animals (red) in Basal Ganglia nuclei.

Figure S4
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Figure S4 Sensitivity Analysis: Second 30s data set

Here, we show the results of the second sensitivity analysis, having obtained a posteriori connectivity estimates using a new 30s data epoch from each animal. The results are similar to those of Figure 6A and show that connections from Striatum to GPe and from GPe to STN significantly increase beta activity in the Parkinsonian network (**p <0.005; *p< 0.05 Bonferroni corrected for multiple comparisons).

Figure S5
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Figure S5 Sensitivity Analysis of connections in the indirect pathway: Parkinsonian vs. Control network

Comparison of 
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for healthy and Parkinsonian networks along indirect pathway connections, cortex to striatum, striatum to GPe and GPe to STN. Although the connections did not show significant strength differences, (main text Figures 4B and 5A), perturbations in these connections increased beta activity when embedded in the Parkinsonian network (*p<0.01 Bonferroni corrected for multiple comparisons).  

Figure S6
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Figure S6 Sensitivity Analysis: 60 Hz oscillations

Here we show the results of a sensitivity analysis, where we measure the sensitivity of a non beta frequency (60 Hz gamma) to changes in connection strength for the Parkinsonian animals. The results should be compared to Fig 6A. We find no significant sensitivity across animals in any connection.

Figure S7
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Figure S7 Posterior Correlations and Parameter Identifiability

Here, we show the posterior correlation matrices derived from the posterior covariance of the averaged Control data DCM and averaged Parkinsonian data DCM. High correlations in posterior estimates indicate redundancy in the network, where two parameters may contribute equivalently to the observed response. The colorbar is applicable to all images. Top. Control DCM correlations have high values (0.91) for parameter set γ; the intrinsic cortical connections rendering these parameters unidentifiable. However, for our parameters of interest; the extrinsic connectivity parameters λ, the average correlation of parameters is 0.12 ± 0.19 (mean ± std), with a maximum (absolute) correlation between parameters λ3,2 (parameter 5 striatum to GPe) and λ3,4 (parameter 8 STN to GPe) of 0.66 (inset). Bottom. Similarly for the Parkinsonian DCM, the maximum correlation is observed for the intrinsic cortical connectivities γ (-0.82). While for the parameter set λ, correlations are in general low (0.0649 ± 0.1396), with maximum (absolute) correlation at (0.45) for parameters λ4,1 (parameter 4 cortex to STN)  and λ3,2  (parameter 5 striatum to GPe). Furthermore, when examining the key parameters λ in the individual DCMs for the Control and Parkinsonian animals, we found maximum posterior correlations among parameter pairs that varied from data set to data set; with three different pairs exhibiting maximal correlations among the Control animals and six different pairs showing maximal correlation in the Parkinsonian models. While ideally parameter correlations would be zero, an average of ~0.1 suffices for making meaningful conclusions. Overall these data highlight the identifiability of the extrinsic connectivity parameters.
Figure S8
[image: image36.emf]-2

0

2

4

6

8

10

EPN to Thalamus

Thalamus to 

Ctx

Ctx

to Striatum

Ctx

to STN

Striatum to 

GPe

Striatum to EPN

STN to EPN

STN to 

GPe

GPe

to STN

*

MAP   connectivity estimates  


Figure S8 Robustness Demonstration
MAP estimates plotted with 95% Bayesian credible intervals for a new model where connections from STN to GPe were omitted. The DCM was fit to the grand averaged Control (white) and PD (black) data separately. We see that although the parameters are optimised to different posterior values (compared to the standard model; Figure 5A), the same connection remains significantly different (Cortex to STN) between groups (>95% probability). 

Protocol S1 EM Pseudocode

Following Friston et al., (2006; 2002) our E-step employs a local linear approximation of Equation 3 (main text) about the current conditional expectation 
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This local linear approximation allows one to perform a gradient ascent on the free energy to optimise the posterior moments, given the priors 
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 (see Table S1 in Text S1). The M-step performs an ascent on the free energy to update the hyperparameter. This is repeated until convergence where the objective function F changes by less than 10-2.
E-step
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