Text S3: Integrating binocular term over frequency and orientation

The binocular term in the response of a single energy-model complex cell is
$B=2\left(S_{L 1} S_{R 1}+S_{L 2} S_{R 2}\right)$
$=2 \int d x d y \int d x^{\prime} d y^{\prime} I_{L}(x, y) I_{R}\left(x^{\prime}, y^{\prime}\right) \exp \left(-\frac{\left(\left(x-x_{L}\right)^{2}+\left(y-y_{L}\right)^{2}\right)+\left(\left(x^{\prime}-x_{R}\right)^{2}+\left(y^{\prime}-y_{R}\right)^{2}\right)}{2 \sigma^{2}}\right)$
$\left[\cos \left(k_{x} x+k_{y} y+\phi_{L}\right) \cos \left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)+\sin \left(k_{x} x+k_{y} y+\phi_{L}\right) \sin \left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)\right]$
This cell is tuned to a spatial frequency and orientation specified by the wavenumbers k_{x} and k_{y}, and has receptive fields centered at (x_{L}, y_{L}) and (x_{R}, y_{R}), with phases ϕ_{L} and ϕ_{R} respectively. We now compute the total response of many such cells tuned to many spatial frequencies and orientations, but all with the same receptive field centers and phases:
$B_{\mathrm{int}}=\int B d k_{x} d k_{y}$
$=2 \int d x d y \int d x^{\prime} d y^{\prime} I_{L}(x, y) I_{R}\left(x^{\prime}, y^{\prime}\right) \exp \left(-\frac{\left(\left(x-x_{L}\right)^{2}+\left(y-y_{L}\right)^{2}\right)+\left(\left(x^{\prime}-x_{R}\right)^{2}+\left(y^{\prime}-y_{R}\right)^{2}\right)}{2 \sigma_{R F}^{2}}\right)$
$\int d k_{x} d k_{y}\left[\cos \left(k_{x} x+k_{y} y+\phi_{L}\right) \cos \left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)+\sin \left(k_{x} x+k_{y} y+\phi_{L}\right) \sin \left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)\right]$

Doing the innermost integral first, we obtain
$\int d k_{x} d k_{y}\left\{\cos \left(k_{x} x+k_{y} y+\phi_{L}\right) \cos \left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)+\sin \left(k_{x} x+k_{y} y+\phi_{L}\right) \sin \left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)\right\}$
$=\frac{1}{4} \int d k_{x} d k_{y}\left\{\begin{array}{l}{\left[\exp i\left(k_{x} x+k_{y} y+\phi_{L}\right)+\exp -i\left(k_{x} x+k_{y} y+\phi_{L}\right)\right]\left[\exp i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)+\exp -i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)\right]} \\ -\left[\exp i\left(k_{x} x+k_{y} y+\phi_{L}\right)-\exp -i\left(k_{x} x+k_{y} y+\phi_{L}\right)\right]\left[\exp i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)-\exp -i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right)\right]\end{array}\right\}$
$=\frac{1}{4} \int d k_{x} d k_{y}\left\{\begin{array}{l}\exp i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp i\left(k_{x} x+k_{y} y+\phi_{L}\right)+\exp i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp -i\left(k_{x} x+k_{y} y+\phi_{L}\right) \\ +\exp -i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp i\left(k_{x} x+k_{y} y+\phi_{L}\right)+\exp -i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp -i\left(k_{x} x+k_{y} y+\phi_{L}\right) \\ -\exp i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp i\left(k_{x} x+k_{y} y+\phi_{L}\right)+\exp i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp -i\left(k_{x} x+k_{y} y+\phi_{L}\right) \\ +\exp -i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp i\left(k_{x} x+k_{y} y+\phi_{L}\right)-\exp -i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp -i\left(k_{x} x+k_{y} y+\phi_{L}\right)\end{array}\right\}$
$=\frac{1}{2} \int d k_{x} d k_{y}\left\{\exp i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp -i\left(k_{x} x+k_{y} y+\phi_{L}\right)+\exp -i\left(k_{x} x^{\prime}+k_{y} y^{\prime}+\phi_{R}\right) \exp i\left(k_{x} x+k_{y} y+\phi_{L}\right)\right\}$
$=\frac{1}{2} \exp i\left(\phi_{R}-\phi_{L}\right) \int d k_{x} d k_{y}\left\{\exp i\left(k_{x} x^{\prime}+k_{y} y^{\prime}\right) \exp -i\left(k_{x} x+k_{y} y\right)\right\}$
$+\frac{1}{2} \exp i\left(\phi_{L}-\phi_{R}\right) \int d k_{x} d k_{y}\left\{\exp -i\left(k_{x} x^{\prime}+k_{y} y^{\prime}\right) \exp i\left(k_{x} x+k_{y} y\right)\right\}$
$=\frac{1}{2} \exp i\left(\phi_{R}-\phi_{L}\right) \int d k_{x} d k_{y} \exp i\left(k_{x}\left(x^{\prime}-x\right)+k_{y}\left(y^{\prime}-y\right)\right)+\frac{1}{2} \exp i\left(\phi_{L}-\phi_{R}\right) \int d k_{x} d k_{y} \exp i\left(k_{x}\left(x-x^{\prime}\right)+k_{y}\left(y-y^{\prime}\right)\right)$
$=\frac{1}{2}\left(e^{i \phi_{R}-i \phi_{L}}+e^{-i \phi_{R}+i \phi_{L}}\right) \delta\left(x-x^{\prime}\right) \delta\left(y-y^{\prime}\right)=\cos (\Delta \phi) \delta\left(x-x^{\prime}\right) \delta\left(y-y^{\prime}\right)$
where $\Delta \phi=\phi_{R}-\phi_{L}$ is the phase disparity of the cells. Using this result in the equation for the integral of B gives us:
$B_{\text {int }}=\int B d k_{x} d k_{y}=2 \cos (\Delta \phi) \int d x d y \exp \left(-\frac{\left(\left(x-x_{L}\right)^{2}+\left(y-y_{L}\right)^{2}\right)}{2 \sigma^{2}}\right) I_{L}(x, y) \exp \left(-\frac{\left(\left(x-x_{R}\right)^{2}+\left(y-y_{R}\right)^{2}\right)}{2 \sigma^{2}}\right) I_{R}(x, y)$

