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1 Stochastic model

A computational model of MHC class I peptide editing was developed using the Stochastic Pi Machine (SPiM) [1],
a programming language for the modular description of concurrent stochastic systems. In this formalism, a sys-
tem is specified as a collection of processes that communicate with each other through channels at stochastic rates.
A protein in a defined state is identified as a process, and a channel is identified as a mechanism for altering this
state. The properties of any system described in this language are simulated using an exact stochastic simulation
algorithm [2]. Modularity of the approach allows the model to be extended with additional components, to a level
of complexity that becomes analytically intractable. The three components of the peptide loading complex that
are known to determine relative presentation were modeled explicitly (Fig. S1), namely peptides, MHC class I and
tapasin. Briefly, peptides (Fig. S1A) are characterized by their ability to bind and unbind MHC with specific rates
(Table S1). Only one peptide category is shown in Fig. S1, parameterized by the peptide off-rate i, though multiple
peptide categories can be included, each with a different off-rate. The modularity of the approach allows an arbi-
trary number of peptide categories to be introduced without modifying the models for MHC or tapasin. The rates
of peptide generation and degradation control the number of peptides in the system, implicitly approximating the
behavior of the TAP transporter and the ER peptide degradation and efflux system. Tapasin is generated and de-
graded and has the ability to interact with MHC (Fig. S1B). MHC can interact both with peptides and with tapasin
(Fig. S1C), where the effect of tapasin on peptide-MHC interactions is given by modulating the rates of peptide
binding and unbinding (Table S1).

The SPiM language allowed for rapid exploration of alternative peptide editing models in a modular fashion.
Once a suitable model was obtained, a corresponding set of chemical reactions was generated from the model
according to the rules of the SPiM language [1] (see Methods).
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Figure S1: A computational model of MHC class I peptide editing, programmed in SPiM.
Each of the graphs A, B and C describes the behavior of a molecular component in the system, and each shape
represents a component in a particular state. Each box represents an action that a component can perform in order
to change from one state to another. Actions such as production and degradation that affect only a single compo-
nent are represented as square boxes. Interactions such as binding and unbinding that involve two components
are represented as boxes with upper or lower lines, which denote complementary motifs. An overline denotes a
send action, while an underline denotes a receive action, where send and receive are considered to be complemen-
tary. For example, a free peptide can send on b, while open MHC can receive on b, both in presence and absence
of tapasin. The communication is parameterized by ui, which represents the fact that MHC and peptide become
bound after the interaction takes place, and can subsequently unbind by communicating on ui. Each communi-
cation channel is associated with a rate, denoting the average number of reactions per unit time. (A) Peptides
are actively transported into the ER at rate gi, where they are degraded at rate dP. A peptide binds to MHC by
sending on b, and unbinds by receiving on ui. (B) Tapasin is generated in the ER at rate gT , where it is degraded at
rate dT . Tapasin binds to MHC by sending on bT , and unbinds by receiving on uT . (C) Free MHC is assembled in
the ER at rate gM, where it is degraded at rate dM. Free MHC loads a peptide by receiving on b, and releases the
peptide by sending on ui. Peptide-loaded MHC leaves the ER at rate e, after which peptides can unbind at rate ui.
Peptides are assumed to immediately degrade following unbinding from MHC at the cell surface, which in turn
is degraded at rate dMe. Inside the ER, free MHC binds to tapasin by receiving on bT , and unbinds by sending on
uT . MHC can also load a peptide when bound to tapasin, but can only egress after dissociating from tapasin. The
degradation of MHC bound to tapasin and the degradation of loaded MHC in the ER are neglected. The potential
effects of peptide and tapasin on MHC are modeled by allowing the reaction rates to be multiplied by constant
factors.
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2 ODE analysis of peptide editing

d[M]

dt
= ∑

i
ui[MPi] + uT [TM] + gM − (b ∑

i
[Pi] + bT [T] + dM)[M] (S1)

d[T]
dt

= uT [TM] + gT + uTv ∑
i
[TMPi]− (bT [M] + dT)[T] (S2)

d[MPi]

dt
= b[M][Pi] + uTv[TMPi]− (ui + e)[MPi] (S3)

d[TM]

dt
= bT [M][T] + q ∑

i
ui[TMPi]− (uT + c ∑

i
[Pi])[TM] (S4)

d[TMPi]

dt
= c[TM][Pi]− (uiq + uTv)[TMPi] (S5)

d[Pi]

dt
= ui[MPi] + uiq[TMPi] + gi − (b[M] + c[TM] + dP)[Pi] (S6)

d[MePi]

dt
= e[MPi]− ui[MePi] (S7)

d[Me]
dt

= ∑
i

ui[MePi]− dMe[Me] (S8)

2.1 The proportion of peptides edited via the tapasin pathway

The peptide repertoire at the cell surface will generally be a mixture of peptides that were edited either in the
presence or absence of tapasin. From equation 1 in the main text we observe that the ratio of egressed peptide-
MHC complexes that are loaded in the presence and absence of tapasin is given by the ratio of [TM]∗cx/(ui +
x) to b[M]∗. Since tapasin improves peptide editing, optimal editing will therefore be achieved in cases where
[TM]∗cx/(ui + x) � b[M]∗. This can be achieved if there is a large concentration of tapasin-bound MHC [TM]∗

compared with free MHC [M]∗. To assess partitioning between the two cohorts it would be desirable to express
[TM]∗ in terms of [M]∗ directly, but the relation appears to be non-linear. Instead, we observe that since tapasin and
peptide compete for free MHC, tapasin-assisted peptide editing will be favored by an increase in free tapasin. From
conservation of components in (S1) – (S8) we observe that [T]∗ = gT/dT . Thus, an increase in the concentration of
tapasin-MHC complexes [TM]∗ can be obtained by increasing the ratio of the tapasin generation and degradation
rates. Furthermore, increasing the rate bT of tapasin binding to MHC or decreasing in the rate uT of tapasin
unbinding from MHC will also increase the ratio of [TM]∗ to [M]∗ so as to favor presentation via the tapasin
pathway.

If we assume that tapasin binds strongly to MHC such that [TM]∗ � [M]∗, the majority of peptides will be
loaded via the tapasin pathway provided cx/b(ui + x) is not too low. The latter expression quantifies the extent
to which MHC is able to load peptide in the presence of tapasin, which is known to be high in tapasin-dependent
alleles [3]. Since tapasin tends to increase the rate at which peptides bind to MHC (c ≥ b), it should be sufficient to
ensure that x = uT ·v/q is not too low. Since peptides tend to increase the rate at which tapasin unbinds from MHC
(v ≥ 1), it should be sufficient to ensure that the rate of tapasin unbinding uT is not too low and that the factor q
is not too high. Otherwise, peptides will unbind before tapasin and will tend to favor editing via the non-tapasin
pathway. Interestingly, if [TM]∗ � [M]∗, for example due to rapid binding and unbinding of MHC and tapasin,
in order for the majority of peptides to follow the tapasin pathway the rate of peptide binding in the presence of
tapasin needs to be much greater than in the absence of tapasin (c� b).

2.2 The effect of high peptide turnover on peptide editing

According to equation 1 in the main text, the concentration of egressed peptide-MHC complexes [MePi]
∗ is pro-

portional to the steady-state concentration of peptides [Pi]
∗. By considering the conservation of peptides we find

that [Pi]
∗ = (gi − e[MPi]

∗)/dp. Since high affinity peptides are selectively egressed to the cell surface, the concen-
tration of high-affinity peptides in the ER will be correspondingly reduced, effectively reducing the optimization
of MHC. However, if we assume high peptide turnover characterized by high peptide generation and degradation
rates [4], then the rate gi of peptide generation in the ER will be much greater than the rate at which peptides are
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transported from the ER, such that gi � e[MPi]
∗. This implies that the concentration of peptides in the ER will

depend almost exclusively on the peptide generation and degradation rates, with [Pi]
∗ ≈ gi/dP. Intuitively, this

means that any peptides that are egressed from the ER will be rapidly replaced, thereby reducing the effect of
selective egress on the peptide repertoire and enabling maximum optimization.

2.3 The effect of tapasin on the peptide repertoire
If we assume that peptide loading takes place via the tapasin pathway and that peptides have a high turnover in
the ER [5], we can simplify equation (1) as follows, where C = c[TM]∗/dP:

[MePi]
∗ ≈

C gi
x

ui + x
e

ui + e
1
ui

Supply Tapasin ER Surface
(S9)

The equation corresponds to an upper bound on peptide optimization in the presence of tapasin. We can compute
the corresponding equation in the absence of tapasin in a similar fashion, where the subscript KO denotes tapasin
knock-out and CKO = b[M]∗KO/dP:

[MePi]
∗
KO ≈

CKO gi
e

ui + e
1
ui

Supply ER Surface
(S10)

We use these equations to compute the proportion of a given peptide-MHC complex [MePi] at the cell surface,
both in the presence and absence of tapasin.

[MePi]
∗

∑k[MePk]∗
=

gi/(ui(ui + e)(ui + x))
∑k gk/(uk(uk + e)(uk + x))

e,x→0−→
gi/u3

i

∑k gk/u3
k

[MePi]
∗
KO

∑k[MePk]
∗
KO

=
gi/(ui(ui + e))

∑k gk/(uk(uk + e))
e,x→0−→

gi/u2
i

∑k gk/u2
k

This defines a measure of peptide optimization, similar to the principles outlined in Fig. 3 of the main text, but
also taking into account discrimination at the cell surface. In particular, discrimination will vary with 1/u3

i in the
presence of tapasin, and with 1/u2

i in the absence of tapasin. Note that the proportion of egressed peptide-MHC
complexes will also depend on the generation of available peptides, and that optimization is maximal as e and x
tend to zero. We can use equations (S9) and (S10) to compute the effect of tapasin on the presentation of a given
peptide Pi, given by the fold enhancement F(i):

F(i) =
[MePi]

∗

[MePi]
∗
KO

=
cx[TM]∗

b(ui + x)[M]∗KO
(S11)

From this we can compute the relative effect of tapasin on the presentation of a peptide Pi compared with a peptide
Pj, given by the relative fold enhancement F(i)/F(j):

F(i)

F(j)
≈ 1/(ui + x)

1/(uj + x)
x→0−→ 1/ui

1/uj
(S12)

The equation shows that tapasin enhances the presentation of peptides according to the inverse of the peptide
off-rate. This provides a mechanistic explanation for one of the key experimental findings [6], which showed that
tapasin enhances MHC class I peptide presentation according to peptide half-life.

3 Time-dependent optimization

3.1 Model simulations for time-dependent optimization by MHC class I

Experiments were conducted [3] in which a fixed cohort of MHC molecules was labeled with a radioactive isotope,
and the change in peptide cargo of the cohort was observed over time. These are generally referred to as pulse-chase
experiments. To follow the thermostability profile of a fixed cohort of MHC class I complexes over time, cells were
pulse-labeled with radioactive amino acids for 5 min and followed for 2 h, both in the presence and absence of
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tapasin. We modeled the time-dependent optimization of a fixed cohort of MHC by replacing the molecule M in
equations (S1) – (S8) with an indexed molecule Mk and by replacing the generation rate gM with an indexed rate
gMk , where k ∈ {1, 2}. We let M1 and M2 denote the unlabeled and labeled molecules, respectively. During the
simulation, we switched from the generation of unlabeled molecules M1 to the generation of labeled molecules
M2 for a short time period, to represent the radiolabelling step. By plotting the concentrations of all species where
k = 2, we observed the progression of a fixed cohort of MHC molecules over time.

3.2 Deriving models for HLA-B4402, HLA-B2705 and HLA-B4405

Models were derived for the MHC alleles HLA-B4402, HLA-B2705 and HLA-B4405 so as to reproduce the dy-
namics observed in pulse-chase experiments [3]. In these experiments, samples of labeled MHC complexes were
taken at various time points and the thermostability of complexes was measured by heating them to 4°C, 37°C and
50°C for 12 min. The amount of conformationally intact complexes that survived the heating process was used
to indicate the proportion of complexes with low, medium or high affinity peptide. We therefore simulated three
representative peptides Plow, Pmedium and Phigh. We assumed that only MHC complexes containing high affinity
peptide were stable at 50°C, that complexes containing high and medium affinity peptides were stable at 37°C,
and that all peptide-bound and empty complexes were stable at 4°C.

To identify the kinetic rates which were not measured, we applied our parameter estimation procedure to
minimize the deviation of model simulations from the measurements of labeled MHC (Fig. 4 in the main text)
and endoglycosidase-H (endoH) resistance (Fig. S4C). Consequently, we sought models (parameter sets) for each
of the alleles B4402, B2705 and B4405. In order to understand how natural polymorphism in the MHC genetic
region gives rise to variable time-dependent optimization, we allowed some parameter rates to vary between the
different alleles (allele-specific) whilst keeping others fixed (allele-independent). This enabled us to evaluate a
series of hypotheses which specify which reactions are allele-specific. We searched through the parameter space
of each model for parameter sets which minimized the deviations between the available data for B4402, B2705 and
B4405 and the corresponding simulated values (see Methods). As the number of allele-specific parameters varied
between successive hypotheses, we used the Bayesian Information Criterion to assess the most representative
model hypothesis for allelic variation. A Markov Chain Monte Carlo (MCMC) algorithm was used to sample from
the parameter space, as implemented in the Filzbach software (see Methods).

3.3 Parameter variation analysis for time-dependent optimization

The peptide cargo of MHC undergoes time-dependent optimization, which is enhanced by tapasin [3]. Thus far,
such optimization has only been measured at the whole cell level, and a distinction has not explicitly been made
between optimization in the ER and optimization at the cell surface. To assess the potential impact of tapasin on
time-dependent optimization, we used our model to explore the effects of the known biochemical interactions of
tapasin (the tapasin factors c, q and v). We also investigated the effects of peptide-MHC egression (e) and tapasin
unbinding (uT) on time-dependent optimization.

The method we used was motivated by classical sensitivity analysis. Starting from the optimal parameter sets
for the B4402, B2705 and B4405 MHC alleles, we changed each of the parameters c, q, v, e and uT one at a time
over a broad range. We defined the degree of optimization as the number of high affinity peptide-MHC complexes
divided by total MHC (Fig. S5) and we computed the degree of optimization in the ER, at the cell surface, or
combined ER and cell surface after 120 minutes. This allowed us to quantify how a particular factor influenced
time-dependent optimization.

Parameter variation analysis indicated that optimization at the cell surface could only be improved by the
considered parameters when reducing e for B2705 and B4405 (Fig. S5). Surprisingly poor optimization was ob-
served prior to egression, and could be improved for all alleles by reducing q and e or increasing c, though only
very slightly in the case of B4405 (Fig. S5; left panels). However, total combined optimization [3] could only be
improved by reducing e, indicating that the cell surface values comprise the major contribution to the measured
data. The cell surface dynamics associated with each allele nicely illustrate the hypothesized importance of the
quantity x = uTv/q, since in all three alleles it is possible to observe an inverse relationship between q and uT or
v. Although our analysis suggests that low x increases optimization, here we also observe that x should not be too
small, suggesting a possible trade-off between improving steady state optimization and reducing the time taken to
reach this optimization. In all cases, optimization was improved monotonically with c, the rate which determines
the flux through the tapasin-dependent pathway.
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Table S1: Parameter values for the Mb model.

Description Parameter Measured Range Mb

Production of tapasin in the ER gT Fixed 1505

Degradation of tapasin in the ER dT 10−6 − 10−2 1.726× 10−3

Production of MHC in the ER gM Fixed 150.5

Degradation of MHC in the ER dM 2− 3× 10−4 s−1 [7, 8] 10−6 − 10−1 7.989× 10−5

Degradation of MHC at the cell surface dMe 2.4× 10−4 s−1 [6] 10−6 − 10−1 9.329× 10−5

Degradation of peptides in the ER dP 0.13 s−1 [5] Fixed 0.13

Binding of tapasin to MHC bT 10−11 − 10−5 1.663× 10−9

Unbinding of tapasin from empty MHC uT 10−6 − 10−1 1.185× 10−6

Binding of peptide to tapasin-bound MHC c 10−8 − 10−2 8.303× 10−8

Effect of tapasin on peptide-MHC unbinding q 1− 105 2.104× 104

Effect of peptide on tapasin-MHC unbinding v 1− 103 936.3

Binding of peptide to empty MHC bB4402 0.2− 2× 106 M−1s−1 [7, 9] 10−11 − 10−5 3.177× 10−11

bB2705 10−11 − 10−5 1.945× 10−9

bB4405 10−11 − 10−5 4.367× 10−9

Egression of loaded MHC from the ER e 10−4 − 1 0.1142

Unbinding of peptides from MHC ulow 7.8× 10−6 − 4× 10−3 s−1 [9] 10−8 − 10−2 8.764× 10−4

umedium 10−8 − 10−2 5.658× 10−6

uhigh 10−8 − 10−2 4.177× 10−7

Active transport of peptides into ER glow 1.3− 3.3× 10−6 M s−1 [5] 1− 105 2.093× 104

gmedium 1− 105 1.759× 104

ghigh 1− 105 1.064× 104
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Figure S2: Simulation of the Mb,e model hypothesis for MHC polymorphism.
A labeled cohort of MHC complexes was simulated using the model of Fig. 2 in the main text, by switching
from generation of an unlabeled MHC population to a labeled population for the time interval indicated by the
yellow blocks. The plots represent the sum of the concentrations of all peptide-MHC complexes at each time-
point (blue), the sum of medium and high affinity peptide complexes (green) and just the high affinity peptide
complexes (red). Corresponding experimental results [3] are also reported (circles). Simulations were conducted
for representative low, medium and high affinity peptides with dissociation rates. The model was calibrated using
different parameter sets for B4402, B2705 and B4405 alleles, both in the presence and absence of tapasin. The rate
constants were identical across the different allele models, except for the binding of peptide to empty MHC (b)
and the egression of peptide-MHC complexes from the ER (e) (see Table S1 for rate values).
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parameter value, given the experimental observations. The posterior distributions were formed over 200’000 iter-
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Figure S4: Detailed simulations of radiolabelling experiments [3].
Radio-labeling of MHC was simulated using two distinct populations of MHC molecules, an unlabelled popu-
lation M1 and a labeled population M2. The molecule M in equations (S1) – (S8) was replaced with an indexed
molecule Mk and the generation rate gM was replaced with an indexed rate gMk , where k ∈ {1, 2}. The resulting
equations were simulated by setting gM1 = gM and gM2 = 0 until the system approached steady state, and then
setting gM1 = 0 and gM2 = gM for 5 minutes during the radiolabeling, before reverting back to the original values
for gM1 and gM2 for the next 120 minutes. (A, B) Shown are labeled MHC and peptide-MHC complexes at the cell
surface (Me), in the ER (M), and in the ER with tapasin bound (TM). Simulations conducted for absence (A) and
presence (B) of tapasin. Peptides are indicated by Pi, where the subscript i represents low (1), medium (2) or high
(3) affinity peptides. (C) Simulation of complex transit to the cell surface in the presence (solid lines) and absence
(broken lines) of tapasin, corresponding to % maximal endoH resistance. Calculated as total cell surface MHC
divided by maximum total MHC over the whole simulation. Corresponding measured data-points [3], comparing
absence (open squares) with presence (closed squares) of tapasin.
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Figure S5: Parameter variation analysis for time-dependent optimization.
Radio-labeling was performed in silico by simulating two distinct MHC populations, as described in
Fig. S4, assuming representative low, medium and high affinity peptides Plow,Pmedium, Phigh, respectively.
The degree of optimization was computed for the models of MHC alleles B4402 (top), B2705 (middle)
and B4405 (bottom) 120 minutes after radio-labeling. Optimization was computed in the ER (left panels;

[MPhigh]+[TMPhigh]

[M]+[TM]+∑i([MPi ]+[TMPi ])
), at the cell surface (centre panels;

[MePhigh]

[Me]+∑i(MePi ]
) and as a combination of the two (right

panels;
[MPhigh]+[TMPhigh]+[MePhigh]

[M]+[TM]+[Me]+∑i([MPi ]+[TMPi ]+[MePi ]
), for i ∈ {low, medium, high}. In each case, simulations were per-

formed whereby parameters c, q, v, e and uT were multiplied independently by a factor ranging between 10−5 and
105. Note that the results for varying v are hidden by near-identical results for varying uT .
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model as having b fixed at either the values found for HLA-B4402, HLA-B2705 and HLA-B4405, or allowed to vary
during the search. The parameter dMe was fixed as 2.4× 10−4s−1. Model classes where dM, dMe, e or both dMe and
e were allowed to vary were also investigated, starting from the B4402, B2705, or B4405 alleles, or with a variable b.
The bars indicate the Bayesian Information Criterion (BIC) for the maximum likelihood estimates of each model.

4 Steady-state optimization

4.1 Competition between SIINFEKL variants and a population of endogenous peptides

To investigate how tapasin enhances MHC class I peptide presentation, we trained our HLA-B model to simulate
the mouse MHC allele H2-Kb (Kb) using a combination of published [6] and novel experimental data. Steady-state
presentation at the cell surface was measured [6] using mAb 25.D1 (D1), which specifically recognizes SIINFEKL
peptide variants bound to Kb, and using mAb Y3, which recognizes all empty and peptide-occupied Kb. SIINFEKL
is a high stability peptide derived from chicken ovalbumin, commonly used in the study of antigen presentation.
We simulated the experiments [6] using three peptides. The first peptide was taken to be one of the SIINFEKL
variants, so that the steady-state concentration [MePi]

∗ corresponds with measurements of D1. Clearly, the number
of presented complexes strongly depends on the pool of endogenous peptides with which it is competing, though
this pool itself depends on the presence of tapasin. We chose to represent the pool of endogenous peptides by two
peptides P1, P2, with dissociation rates u1 > u2, and supply rates g1, g2. In order to quantify suitable dissociation
and supply rates for the endogenous peptides, we included - in our cost function for model identification - Y3
measurements following BFA treatment, which showed significant tapasin-dependence (see Fig. 6B in the main
text). The cost function also comprised an EndoH term to calibrate the rate of egression (±tpn; see Fig. 6C in the
main text), and terms for D1 and Y3 for calibrating SIINFEKL presentation (both ±tpn; see Fig. 6D, E in the main
text).

Based on the previously identified models for HLA-B, a suitable model for H2-Kb was identified using the
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Table S2: Parameter values for the H2-Kb model.

Parameter Value Parameter Value

b 2.755× 10−10 u2 4.102× 10−2

dMe 5.193× 10−5 g1 1.831

e 7.071× 10−4 g2 9.948× 106

u1 1.545× 10−7 g0 24.325

Table S3: Levels of egressed peptide-MHC complexes measured by fluorescence of antibodies 25.D1 and Y3, in
the presence and absence of tapasin. The fold enhancement with tapasin is also shown, where the FILKSINE
fluorescence is subtracted from the 25.D1 fluorescence both in the presence and absence of tapasin. For each
measured quantity, the experimental results are shown on the left, while the corresponding model simulation
results are shown on the right. Experimental values are reproduced from [6].

D1 Antibody Y3 Antibody Fold

Peptide .220-Tpn Model .220 Model .220-Tpn Model .220 Model .220 Model

SIINFEKL 1213 1205 31 60 1081 1197 1023 833 41.12 20.72

SIINFEKV 722 655 32 43 1032 1199 1019 833 23.62 15.59

SIINFEKM 604 414 72 34 1075 1199 1125 833 8.52 12.64

SIINYEKL 16 13 5 5 1031 1199 1113 833 3.53 2.98

FILKSINE 4 1.6 1120 1113 2.5

Filzbach MCMC software (see Methods). H2-Kb is considered to be a moderately tapasin-dependent allele, which
suggests it will be more dynamically equivalent to B4402 than B2705 and B4405. This hypothesis was initially
tested by starting H2-Kb optimization from the parameter sets of B4402, B2705 and B4405, allowing only the
parameters associated with the endogenous peptides (u1, u2, g1 and g2), the supply of SIINFEKL variants (g0) to
vary. As the degradation of empty MHC at the cell surface (dMe) had been measured for H2-Kb, we fixed dMe
at the measured value (2.4× 10−4). The optimization procedure performed better for the B2705 and B4405 rates
than for B4402 (Fig. S6), though comparing the simulations with the data indicated that none of the models were
suitable. When enabling the allele parameter b to also vary, a minor improvement was observed over the HLA-
B models with the smaller search space (Fig. S6). Next, we tried extending the search space to allow variation
in parameters which could affect the system both in the presence and absence of tapasin (dM, dMe and e), one
at time. A considerable improvement was observed when varying dMe, with optimal BIC observed when fixing
peptide binding at the B4402 rate (Fig. S6B). This might be explained by the simulation of the Y3 measurements
after treatment with BFA (see Fig. 6B in the main text) strongly depending on the rates of peptide unbinding and
surface MHC degradation. We therefore consider experimental data of this kind to be effective for determining
dMe.

The improvement gained from varying dMe motivated us to also consider varying e, which we expected to be
pivotal in reproducing the dynamics of complexes acquiring EndoH resistance (see Fig. 6E in the main text). The
optimal Mb,dMe ,e model produced the best fit to the data in both the log-likelihood and BIC measures (Fig. S6A,
B), so we retained this model as our candidate H2-Kb parameter set (see Table S2 for values). A comparison of
measured and simulated D1 and Y3 measurements for SIINFEKL variants is presented in Table S3.

4.2 Peptide optimization is faster with enhanced dissociation than with delayed egress

Steady-state optimization was shown to depend critically on the factor x, which is the ratio between the rate of
tapasin dissociation uTv and the rate enhancement q of peptide dissociation. Provided the approximation in equa-
tion (1) is valid, modifying uTv and q such that uTv/q remains constant should not alter the steady-state levels of
cell surface peptide-MHC complexes, and thus the degree of peptide optimization. Therefore, considering steady-
state measurements alone was not sufficient to identify uTv and q uniquely. We found that by also constraining the
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Figure S7: Decreasing q and uTv slows the rate of peptide optimization.
A parametric perturbation was applied to the model of Kb, which retains the approximate steady-state levels of cell
surface peptide-MHC complexes. The parameters q and v (blue lines), or q and uT (green lines) were multiplied
by a constant factor (as indicated on the horizontal axis), which keeps x = uTv/q constant, and therefore the
approximation in Eqn 1 fixed. The effect is shown on the cost function terms (A) ∆D1, (B) ∆Y3 and (C) ∆EndoH,
(D) the degree of optimization (proportion of high affinity complexes at steady state), and (E) the half-time of the
convergence to the steady-state. Also marked is the scale factor for which the scaled value of q is 1.

model parameters against data measuring endoglycosidase-H resistance (see Fig. 6E–G in the main text), which
tracks the quantity of peptide-MHC complexes that have left the ER, we were able to identify optimal values for
q and uTv. We visualize this by plotting the cost function scores for D1, Y3 and EndoH against relative values
of uTv and q, which illustrates the importance of the ∆EndoH term in constraining the parameter set (Fig. S7A–C).
Although a wide range of scale factors had no effect on the deviation from the D1 and Y3 data, decreasing q (and
uT or v) led to a large increase in the deviations from the EndoH data.

Through parameter estimation of the HLA-B alleles, we found that q was required to be high, with the rate of
tapasin unbinding uTv being lower than the peptide off-rate qui (Table S1). Therefore, tapasin achieves enhanced
peptide optimization by increasing the peptide off-rate , rather than reducing the rate of tapasin unbinding. We
hypothesized that by retaining complexes in the ER for longer through reduced tapasin unbinding, the time re-
quired to optimize the peptide cargo would be longer than if tapasin enhances dissociation. To test this hypothesis,
we first calculated the degree of optimization at the cell surface over the range of parameter pairs (q, uT) and (q,
v) assessed for their impact on the cost function terms. The range of values for which the steady-state degree
of optimization was invariant was identical to the range for which the steady-state cost function terms ∆D1 and
∆Y3 were invariant (Fig. S7A, B, D). In particular, decreases in the optimal parameter values down to a factor
of approximately 10−4 were permissible, while only increases in (q, v) were permissible. We next examined the
rate of optimization by computing the half-time of the approach to steady-state optimization, with reference to
an initial state where there are no peptides, MHC or tapasin molecules. We found that decreases in the optimal
parameter values down to a factor of approximately 10−2 did not change the half-time of optimization, though
further decreases led to increasingly longer half-times, and therefore increasingly slower convergence to steady-
state optimization (Fig. S7E). Therefore, there is an observable motivation for tapasin to effect optimization of the
MHC class I peptide cargo through enhanced peptide-MHC dissociation, rather than retaining complexes in the
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ER. This provides an explanation for the mechanism by which tapasin improves peptide optimization.

4.3 Parameter variation analysis

In order to understand how the model parameters relate to peptide optimization, we plotted the degree of op-
timization for the endogenous peptides P1 and P2 (Fig. S8A). Similar to the analysis in Section 3.3, each of the
parameters c, q, v, uT and e were varied up to five orders of magnitude above and below their candidate values
for comparing the degree of optimization with the candidate model. We first found that total optimization (ER +
cell surface) could be improved slightly by increasing c (Fig. S8A). In fact, optimization was an increasing function
of c. In contrast, we found that the nominal values of uT , v and q were very close to optimal in terms of peptide
optimization. As both increases and decreases in these parameters lead to a decline in optimization, there must
be trade-offs associated with these processes. For instance, increasing q enables more peptides to be scanned by
MHC per unit time, though comes at the cost of decreased throughput via the tapasin pathway. If fewer peptides
are loaded via the tapasin pathway, then the cell surface peptide-MHC complexes are less optimized, despite high
q (or low uT , v) improving the selection of high affinity peptides within the ER.

An interesting behavior was observed as e was decreased. The degree of optimization within the ER improved,
as did optimization at the cell surface. However, although total optimization could be improved by decreasing e to
approximately 10% of its nominal value, any further decrease led to an overall decline in optimization. This occurs
because decreasing e increases the relative contribution of the ER to the total quantity of peptide-MHC complexes,
and in the ER there are relatively few high affinity complexes (degree of optimization ~ 10−2) compared with
the cell surface (degree of optimization ~ 10−1). A reduction in e also increased total cell surface presentation,
indicating that the number of complexes at the cell surface was not the primary factor determining the rate e
(Fig. S8B). As e was not identified at the optimal value in terms of both optimization and total presentation, an
alternative selection pressure must be acting against slow egression of peptide-MHC complexes from the ER. A
likely possibility is that slow egression increases the time taken between the arrival of an antigen and the activation
of the T cell receptor, which decreases the effectiveness of the class I pathway. To investigate this possibility, we
computed the rate of ER exit of peptide-MHC complexes (e∑

i
[MPi]

∗), and found that this quantity asymptotes to

a maximum near to the estimated value of e (Fig. S8C).
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Figure S8: Parameter variation for the model of MHC allele H2-Kb.
Starting from the base values of the derived H2-Kb model (indicated by the open circles), each of the parameters
c, q, v, uT and e were increased and decreased up to 5 orders of magnitude to assess their impact on (A) the
optimization of peptide cargo, (B) ER exit, and (C) total cell surface presentation. (A) The degree of optimization
was computed as in Fig. S5, but for two peptides instead of three, using the low affinity endogenous peptide P1 and
the high affinity endogenous peptide P2. Peptide dissociation and supply rates were as estimated. Optimization
was considered within the ER (top panel), at the cell surface (middle panel) or as a combination of the two (bottom
panel). (B) ER exit was computed as the total steady state number of peptide-MHC complexes multiplied by the
rate of egression, i.e. = e∑

i
[MPi]

∗. (C) Cell surface presentation was computed as the total steady state egressed

MHC, both peptide-bound and peptide-free, i.e. = ∑
i
[MePi]

∗ + [Me]∗.
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