Integrating quantitative knowledge into qualitative gene
regulatory network: Supplementary text S1

Application of the method on a simple two gene example

ETG modeling overview

ETG modeling approach needs two inputs: (i) a qualitative abstraction of the dynamical
system, and (ii) quantitative knowledge. As results, one obtains three kinds of outputs:
quantitative simulations of the dynamical system that allows (i) a validation of our results
based on experimental knowledge at disposal and (ii) prediction of biological compound
behaviors over times. Furthermore, sensitivity analysis emphasizes (iii) a ranking of the
most important ETG transitions that must occur to satisfied the overall quantitative be-
havior of the system. Figure 1 pictures the modeling process overview. A MATLAB script
allows to perform the ETG modeling. It can be found here'.

Qualitative inputs of the ETG modeling

1. Defining the ETG graph (core model): The graph describes the qualitative behaviors
of the biological regulatory network by focusing on the products of the genes. As
described in the manuscript, a given gene stochastically regulated by the system either
product a increase of (gene, ), or a decrease (gene_) of its protein quantity, which
characterizes what we call here two events that are related to a given gene. This
graph can be manually built using biological knowledge at disposal (i.e., knowing
what gene activation actives or represses what gene activations). When available,
one should consider to make this graph automatically from qualitative models. For
illustration, the following regulatory model of two genes formalized into a Piecewise
Affine Differential Equations (PADE) system can be transformed into ETG graph in
two steps:

"http://pogg.genouest.org
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Figure 1: Flowchart of the ETG modeling process. For two given inputs, quantitative
knowledge of time series and qualitative biological knowledge, the ETG modeling technique
provides a simulation of the model and an automatic sensitivity analysis. Those results
can be further analyzed like for validation purposes.
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The transformation from PADE systems to ETG structures is straightforward. First,
one produces a state transition graph from a PADE. It is classically obtained by fixing
some inequality constraints on the parameter of the system’s equations (see GNA
webpage for details). Second, the ETG is made from the state transition graph by
considering all possible successions of events, which is here mRNA changes. Precisely,
there exists an edge from state A to state B in the ETG graph if the two successive

transition paths ﬁ . i is present in the state transition graph.

This example is available in MATLAB. The ETG graph is described as a MATLAB
matrix in ExampleSqueleton that defines the corresponding {0, 1}-transition matrix.

This simple example has two latent variables v1 = p;, ., and v2 = p,, ,, allowing
to express the unknown probability transition matrix of the model

v 11— 0 0

0 V2 1—U2 0
0 0 0 1
1 0 0 0

2. Estimation of the impact of each transition: we consider a cost for taking each tran-
sition of the ETG graph. The cost is a direct impact on the protein production. As a
biological assumption, we assume the passive degradation rate (free parameter) to be
equal to 5% for both protein X and protein Y. The value of the active production and
degradation rates d4 and d_ for protein X satisfies an equilibrium principle saying
that for a uniform choice of transition probabilities, protein X expected concentra-
tion is constant. Assuming that d_ = p and d™ = 1/p leads to the resolution of an
equation of order 2 in p where the coefficients depend on the stationary distribution
7 of the transition matrix. Here, the equation is

1pmpr +p e +0.95 X [1 — 7y — -] = 1.

This equation have only one solution smaller than 1, p = 0.8818. Thus d; = 1.1341
and d_ = 0.8818. The impact matrix for protein X is then

1.1341 0.95 0 0
0 0.95 08818 O
0 0 0 0.95

1.1341 O 0 0

This solution is described in MATLAB format in the matrix CostProtein X that de-
scribes the cost of ETG graph transitions on the protein X quantities (mainly, the
transitions involved and the cost for these transitions).


http://ibis.inrialpes.fr/article122.html
http://ibis.inrialpes.fr/article122.html
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Probability inference

To demonstrate the interest of our modeling approach, we consider fictive experimental
data. The dataset is hence defined by the protein X concentration multiplied by 100 in 100
time unit or iterations. Assuming a multiplicative effect of the regulatory network on the
protein concentrations, it corresponds to an asymptotic growth rate (observable variable
of the system) of:

exp(log(100/1)/100) = 1.0471

One must find probabilities that allow to obtain such a growth rate. The inference of these
probabilities is performed by our MATLAB script using:

[BS,BM]=ETG_solve (ExempleSqueleton, {CostProtein_X}, {1.0471}, confidence);

where ExempleSqueleton is the {0, 1}-transition matrix and CostProtein X is a structure
describing the cost of protein X (mainly, the transitions involved and the cost for these
transitions), confidence if the maximal allowed error in the numerical computations. BM is
the matrix of probabilities that satisfy the protein growth rate, whereas BS is the euclidean
distance between the estimated growth rate, as computed using BM, and the optimal growth
rate as given by the experiments.

Plasticity of Event Transition Markov chain face to extreme parame-
ters

In complementary to the results shown in the manuscript, one compares the distributions of
protein Y growth rates under various conditions. All these conditions are compared to the
distribution of a random case where both variables v; and ve are drawn uniformly. Then,
one considers two extreme conditions for the X growth rate. For instance, this parameters
may be equals to 0.97 for simulating a fast degradation of X protein, or 1.1 for simulating
a major burst of protein X production. In both cases, distributions of the Y growth rate
have been estimated by considering 10000 inferred probability matrices. One are then able
to compute their difference of estimated Y growth rate distributions between the “random”
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condition and X growth rates in both extreme conditions.
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The difference in the distributions highlights the inherent plasticity of the Event Tran-
sition Markov chain to estimate protein growth rates in various conditions, despite the
major constraints given by the Event Transition Graph that restricts the quantitative be-
haviors.



