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Text S1: Epidemic processes and percolation

SIR processes

We consider a stochastic SIR process on a lattice, where a pathogen is transmitted between

nearest neighbours. Within this model, a susceptible (S) host that is reached by the pathogen

at some time t0 = 0 (set to 0 for convenience) switches to the infectious (I) state, and can in

turn transmit the pathogen to its susceptible neighbours according to an inhomogeneous Poisson

process with infection rate β(t). The probability that the pathogen is ever transmitted from the

infected site (donor) to the susceptible site (recipient) is given by the transmissibility :

ψ = 1− exp

(

−

∫

∞

0

β(t) dt

)

. (S1)

In many theoretical and practical cases, it is common to consider an infectious period τ , after

which the infectious site switches to the recovered or removed (R) state (hence, β(t) = 0 for t > τ)

and plays no role in the rest of the epidemic. More generally (as is the case for our experiment),

the rate β(t) can decay to 0 fast enough when t→ ∞ for the donor to be considered as effectively

removed (not infectious any longer) for large times. The rate β(t) (and thus the value of ψ) can

be the same for all the hosts in the system (homogeneous system), or in general depend on the

particular donor and recipient sites (heterogeneous system).

The key problem is whether or not an SIR epidemic, starting from a single infected site (as in

our case, or from a small set of infected sites) will invade the system, i.e., infect a significant part

of the population [1]. Since we are considering a stochastic process, it is convenient to define a

probability of invasion P inv for the epidemic, which will depend in general on ψ. In an infinite

system (N → ∞), where the epidemic can go on forever, invasion corresponds to the infection of

an arbitrarily large number of hosts. In a finite system, the epidemic will stop spreading after a

finite time, and the choice of a condition for invasion is not unique: it is based in general on the

boundary conditions of the system (in our experiment, a triangular lattice with the boundaries

arranged as the edges of a hexagon) and depends on the characteristics of the final patch of

infected sites (in our case, the number of edges of the hexagon reached).
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SIR Bond percolation

ψ (transmissibility) p (bond probability)

P inv (probability of invasion) P∞ (mass of the infinite cluster)

value of ψ at the invasion threshold pbond
c

(bond percolation threshold)

ψ ≤ pbond
c

(non-invasive regime) p ≤ pbond
c

(subcritical regime)

ψ > pbond
c

(invasive regime) p > pbond
c

(supercritical regime)

Table S2: SIR processes and bond percolation: mapping. Parameters and regimes of a
homogeneous SIR process (left column) are in the same row with the corresponding parameters
and regimes from bond percolation (right).

Percolation and epidemic invasion

In the bond percolation problem [2], each bond of a lattice is “open” with probability p and

“closed” with probability 1− p. Sites connected by open bonds form clusters, which increase in

size and number as p increases from 0. In an infinite system, an infinite cluster appears when p is

greater than a critical value pbond
c

(the bond percolation threshold). The value of pbond
c

depends on

the topology of the lattice, e.g., pbond
c

= 0.5 for a square lattice and pbond
c

≃ 0.347 for a triangular

lattice [2]. The equivalent of the infinite cluster in finite systems is the spanning cluster, which

connects opposite boundaries of the lattice. The probability that a randomly chosen site belongs

to the infinite cluster, P∞(p) (relative “mass” of the infinite cluster), is 0 below the percolation

threshold (subcritical regime) and grows continuously from P∞(pbond
c

) = 0 to P∞(1) = 1 above

the percolation threshold (supercritical regime).

A rigorous link with the SIR epidemic model can be made [3, 4] by interpreting the “open”

(“closed”) state of a bond as a successful (unsuccessful) event of pathogen transmission along

the bond. The bond probability p is thus identified with the transmissibility ψ. The spread of

the SIR epidemic is then equivalent to a process where open bonds are sequentially joined to

infected sites (with probability ψ), thereby infecting the new attached sites, and a cluster of sites

of the bond-percolation problem is grown from the initial infected site. The invasion threshold

of the system, corresponding to the occurrence of an invasive patch of disease (equivalent to an

infinite cluster of sites), is then given by the condition ψ = pbond
c

, and the probability of invasion,

P inv, is equal to the mass of the infinite cluster P∞. The critical value for the transmissibility

ψ = pbond
c

separates a non-invasive regime for ψ ≤ pbond
c

(where P inv(ψ) = 0, i.e., the epidemic

will never invade) from an invasive regime for ψ > pbond
c

(where P inv(ψ) > 0 and the epidemic

has a non-zero probability to invade). The described mapping is summarised in Table S2.

In an alternative formulation, that has been used to study the connectivity of habitable sites in

the landscape [5, 6], sites (instead of bonds) are occupied with probability p, and a percolating

cluster of adjacent sites occurs at a value psite
c

(site percolation threshold; e.g., psite
c

≃ 0.593 for a

square lattice and psite
c

= 0.5 for a triangular lattice [2]).
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The theory for homogeneous systems was experimentally validated [5,7] studying the spread

of the fungal pathogen and saprotroph R. solani in lattice populations of nutrient sites in Petri

plates. The fungal colonization process was shown to be experimentally equivalent to (and prop-

erly described by) SIR epidemic spread: here, the transmissibility ψ represents the probability of

colonisation between neighbouring nutrient sites, and a host going through the susceptible, in-

fected, and removed stages is replaced by a nutrient site being successively uncolonised, colonised

by the fungus, and depleted of nutrient [7, 8]. Microcosm experiments [7] showed the existence

of thresholds for fungal invasion on a triangular lattice of nutrient sites, corresponding to a value

of ψ close to the predicted value pbond
c

.

Invasion in heterogeneous systems

In [9], we considered SIR epidemic spread in a heterogeneous population, where ψ is a random

number drawn for each donor site from a probability distribution. In this case, a simple mapping

such as in the homogeneous case is not possible anymore, and only a few analytical results are

available. If one considers the dependence of P inv on 〈ψ〉pop (the average of ψ over all the sites in

the population), it has previously been shown [3,10] that the critical value of 〈ψ〉pop, separating

the invasive and non-invasive regimes, lies in general between the bond- and site-percolation

thresholds:

pbond
c

≤ 〈ψ〉pop ≤ psite
c

. (S2)

These results were extended with numerical methods, by considering explicitly the variance of

the distribution for ψ, σ2
pop, for several classes of models [9]. We restrict here to the case of

a two-host system, where hosts belonging to two different classes, A and B (with respective

transmissibilities ψA and ψB) occupy a fraction ρA and ρB = 1 − ρA, respectively, of the lattice

sites. The mean and variance of ψ in this case are:

〈ψ〉pop = ρAψA + (1− ρA)ψB (S3a)

σ2
pop = ρA(1− ρA)(ψA − ψB)

2 , (S3b)

so that the system is homogeneous (σ2
pop = 0) when one of the following conditions is satisfied:

ψA = ψB; ρA = 0; ρA = 1.

The system used in our experiment is described by a particular case of Equations (S3): sites of

type A are filled with nutrient (ψA ≡ ψsite, ρA ≡ ρ) and sites of type B are left empty (ψB = 0),

which yields the expressions in manuscript Equation 1:

〈ψ〉pop = ρψsite

σ2
pop = ρ (1− ρ)ψ2

site .
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We use σ2
pop to quantify the degree of heterogeneity of the system.

For the preliminary simulations in the present paper (manuscript Figure 1) and in [9], we used

a method based on numerical simulations in order to find (i) the dependence of P inv on 〈ψ〉pop

and σ2
pop for several different system sizes, and (ii) the phase boundary for invasion. A brief

description follows.

Given a system of size (number of sites) N , and a value of ρ and ψsite from manuscript

Equation 1, a realisation of heterogeneity corresponds to a particular, randomly generated con-

figuration of “filled” and empty sites. For a given combination of ρ and ψsite (corresponding to a

combination of 〈ψ〉pop and σ2
pop), several realisations (10

2− 103) of heterogeneity were generated;

for each realisation, the epidemic process was run once, starting from a single initial infection,

and recording whether invasion had occurred or not when the process ended. The fraction of

realisations where invasion had occurred was taken as the probability of invasion P inv for that

particular combination of 〈ψ〉pop and σ2
pop.

The phase boundary, and invasion threshold in general, are only uniquely and rigorously

defined in the limit N → ∞, and they have to be inferred from finite-size simulations. The

phase boundary in manuscript Figure 3 (dash-dotted line) was found using finite size scaling and

data collapse [2, 9], and extrapolating the invasion threshold for the system from curves for P inv

obtained for different system sizes. The phase boundary of the “large” (N = 24031) system in

manuscript Figure 1 was found using a cutoff method: the phase boundary was defined as the

set of points where P inv = 0.2 (we have checked that setting the threshold to other small values

around P inv = 0.2 give similar results). The resulting phase diagram is close to that obtained

withmanuscript e scaling and shown in manuscript Figure 3.

The main result, already discussed in the manuscript Introduction, is that the probability

of epidemic invasion P inv increases monotonically with 〈ψ〉pop (for a given σ2
pop), but decreases

monotonically with σ2
pop (for a given 〈ψ〉pop) [9] (manuscript Figure 1). For a sufficiently large

system (manuscript Figure 1A), the epidemic exhibits a “threshold” behaviour, with P inv drop-

ping suddenly from a positive value (invasive region in the parameter space
(

〈ψ〉pop, σ
2
pop

)

) to

zero (non-invasive region). Such behaviour is summarised by the phase diagram in manuscript

Figure 1A, where the invasive and non-invasive regions in the parameter space are separated by

a phase boundary (solid line in manuscript Figure 1B, corresponding to the steep transition in

manuscript Figure 1A). In the phase diagram, three relevant intervals for the mean transmissibil-

ity can be identified. Systems with 〈ψ〉pop < pbond
c

or 〈ψ〉pop > psite
c

are respectively non-invasive

and invasive, independent of the value of σ2
pop. However, for pbond

c
< 〈ψ〉pop < psite

c
, invasion

also depends on σ2
pop. Notably, in this interval it is possible to go from the invasive to the non-

invasive regime and vice-versa by keeping 〈ψ〉pop constant and changing only σ2
pop (e.g., along the

dash-dotted line in manuscript Figure 1B). In relatively small systems (manuscript Figure 1C),

the transition is “smeared out” and the sharp phase boundary disappears, but it is still possible

to identify regions with low and high probability of invasion, and “paths” with constant 〈ψ〉pop

along which P inv decreases with σ2
pop (e.g., the path along the dash-dotted line in manuscript
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Figure 1D).

It was also shown [9] that different families of distributions for ψ yielded very similar phase

boundaries. Hence, the first two moments of the distribution for ψ, 〈ψ〉pop and σ
2
pop, can determine

the position of the boundary with good accuracy (at least for lattices with low coordination

numbers [9]). In general, quadratic functions in 〈ψ〉pop and σ2
pop were found to fit the numerical

data very well (for different lattices), but an analytical expression for the phase boundary could

not be found, nor for the dependence of P inv on 〈ψ〉pop and σ2
pop.

Recently, disease spread with individual heterogeneity has been modeled for complex networks

systems [11–15]. In common with the results for regular lattices [3, 9], network models predict

that P inv is maximised when transmission of infection is homogeneous, and minimised when

the variance in transmission is maximal [11–13]. On the other hand (and differently than for

lattices), network models predict that heterogeneity does not affect the threshold for invasion for

the system, which has the same value as for the corresponding homogeneous system [11–13]. The

reason for the difference is in the network topology: complex networks are locally tree-like (short

cycles are rare and can be neglected): for a tree graph, the bond- and site-percolation threshold

coincide, pbond
c

= psite
c

, and the interval in Equation S2 for the value of 〈ψ〉pop degenerates into a

single point. In the present paper, the analysis is restricted to regular lattices, where the contact

structure –the distribution of host connectivity– is homogeneous by definition, since the number

of neighbours of each site is constant. Such structure is appropriate for a system of sessile or

very locally mobile hosts (e.g., for a plant population or hosts in a fixed habitat), and when the

connectivity of the hosts does not change significantly during the spread of the epidemic. By

allowing variability in contact structure, it is possible to model disease spread in cases when the

connectivity of individuals can vary greatly across the population (typically, human and animal

diseases) [16]: such has been the case for network-based metapopulation models [17–20] and

agent-based models [21] for disease spread.

We also remark that in our heterogeneous model, as in the experiment described in the

present paper, the transmissibility ψ depends only on the donor site (hence, it is related to

the infectiousness of the site). Recent models, both on complex networks [12, 14, 15, 22] and

on lattices [22, 23], have taken into account the case where ψ also depends on the recipient site

(hence, it is also susceptibility-related). A nice analytical result is the proof that, under quite

general assumptions, the bounds in Equation S2 still hold [22].
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