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Text S3: Parameter estimation and data analysis

Markov-chain Monte Carlo method

We fitted to the data a five-parameter model, and modelled the transmission of the fungal

colony between two neighbouring sites as a time-inhomogeneous Poisson process [1], with waiting

time distribution given by manuscript Equation 2, and two different values for the rate λ. The

vector representing the parameters is θ = (ψsite, λ1, λ2, k, tsw), where ψsite is the usual site

transmissibility, k is a shape parameter, tsw is the “switching” time for the transition from the

slower initial process to the faster process, λ = λ1 for t ≤ tsw, and λ = λ2 for t > tsw. Given

the prior distribution of the parameters, π(θ), and the observed data D, we are interested in

finding π(θ|D), the posterior distribution of θ given the data. According to Bayes’ formula,

π(θ|D) ∝ L(θ)π(θ), where the likelihood L(θ) = Pr(D|θ) is given by the probability of the

data conditioned on the parameters.

Assuming that we know exactly the time of colonisation tj of each site j, the likelihood can

be calculated explicitly as the product of the contributions from all those individual sites that

are either infected (with probability density function gj(tj)) or not infected (with probability hj)

at the end of the experiment, tend = 41 days:

L(θ) =
∏

j infected

gj(tj)
∏

j not infected

hj, (S4)

where:

gj(tj) = φj(tj) exp

(
−

∫ tj

ti

φj(t)dt

)
(S5a)

hj = exp

(
−

∫ tend

ti

φj(t)dt

)
. (S5b)

Here, the hazard function for site j is given by φj(t) =
∑

i βW (t− ti), the sum being performed

on all the potential donors of j (i.e., all the neighbouring sites i that are infected before j if j is

infected, or infected before tend if j is not infected). The nearest-neighbour infection rate βW (t)

can be found analytically (not shown here) from manuscript Equation 2, adding the two-stage

time dependence of the parameter λ, and using the relation βW (t) = fW (t)/(1− FW (t)) [1]. In

our case, the exact colonisation times are unobserved (censored), because the status of each site
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Figure S2: Parameter estimation for one of the replicates of treatment C. The replicate
considered here is the same represented in magenta in manuscript Figure 5. For each of the five
parameters of the model we plot: (left) the traceplot of the first 500 (burn-in) iterations; (middle)
the complete traceplot; (right) the estimated posterior distribution.
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is only observed at discrete (2-day or weekly) intervals. All the information we have about time

tj is that it falls within the window (tlowj , tupj ), where tupj is the day when colonisation of j was

first observed, and tlowj the day of the previous survey. The likelihood has to be calculated from

Equations (S4,S5) by integrating out the unobserved colonisation times. Such high-dimensional

integrals are usually unfeasible in practice, and it is common to use numerical methods to obtain

samples from the posterior distribution π(θ|D).

In order to sample from π(θ|D), we used an MCMC method with a Metropolis-Hastings

algorithm [2]. The unobserved colonisation times {tj} were accounted for using data augmenta-

tion [3], i.e., treating them as parameters to be estimated and expanding the parameter vector:

θ → (θ, {tj}). However, additional care had to be taken for these parameters, since at each

Monte Carlo step a pathway of transmission must exist between the site inoculated at time t = 0

and all the other colonised sites in the system (see discussions in [3, 4]).

We assumed independent priors for all the parameters: π(θ) = π(T )π(λ1)π(λ2)π(k)π(tsw).

Exponential priors were used for the parameters of the Weibull distribution: π(λ1) = π(λ2) =

π(k) = Exp(5). For ψ and tsw, noninformative flat priors were used: π(ψ) = U(0, 1), π(tsw) =

U(0, tend). A uniform prior distribution was also used for each augmented colonisation time,

but the support of this distribution in general could change in order to keep the pathway of

transmission [4]. Every chain was run for 105 MCMC steps, discarding an initial burn-in period

of 102− 103 steps. Assessment of the traceplots for each replicate (see Figure S2 for an example)

shows convergence and good mixing of the Markov chains.

Results of parameter estimation

The posterior distributions for ψsite(T, r) for each treatment T and replicate r were used to

calculate the new estimates ψ̂site(T, r), 〈ψ̂〉pop(T, r) and σ̂2
pop(T, r) for each population; an

example is given in manuscript Figure 5. In Figure S3, we show the complete set of results, with

the new estimates for the parameters grouped by treatments and compared with their original

nominal values. Figure S4 shows the corresponding histograms for each treatment. The average

and standard deviation of the new estimates over each treatment are shown in Table S1.

From Figures S3 and S4, two main results emerge. First, there is a systematic shift of ψsite

(consequently, of 〈ψ〉pop and σ
2
pop) to the left of the notional value, starting with treatment D and

increasing for treatments E and F (scatter plots vs. horizontal lines in the panels of Figure S3;

histograms vs. circles in the panels of Figure S4). The discrepancy between nominal (pair-

experiment) and estimated (population-experiment) values of the transmissibility thus becomes

more significant with increasingly high nutrient concentrations. This result can be interpreted

by stating that the transmissibility within a population tends to “saturate” for high nutrient

concentrations (for reasons still not known), differently than in pair experiments. The second,

more important effect is a strong within-treatment variability, already discussed in the manuscript

and summarized in Table S1. The effect is evident, for example, in the histograms for treatment
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Figure S3: Within-treatment variation of the transmissibility. Estimated values of
ψsite, 〈ψ〉pop, σ

2
pop, grouped by treatment. For each treatment T , the new individual-replicate

estimates of 〈ψ〉pop(T, r) (coloured symbols) are plotted in the lower panel as a function of the
corresponding estimates of ψsite(T, r), with error bars corresponding to the 95% credible interval

(error bars for ψ̂site(T, r) are not shown). The new estimates of σ2
pop(T, r) are plotted in the

same way in the upper panel. The coloured circles on the ψsite axis mark the nominal value of
ψsite; the coloured horizontal lines in the lower and upper panel mark the the nominal value of
〈ψ〉pop and σ2

pop, respectively.
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Figure S4: Distribution of within-treatment heterogeneity. Histograms of the new esti-
mates ψ̂site(T, r), 〈ψ̂〉pop(T, r) and σ̂

2
pop(T, r) from Figure S3. Coloured circles on the horizontal

axes mark the nominal value of the corresponding parameter. Beta distributions (Equation S6)

fitted to the distributions for ψ̂site(T, r) are shown overlayed to the histograms (rescaled for dis-
play): best fit (solid black curve) and 95% confidence intervals (dashed red and blue curves). The

distributions for 〈ψ̂〉pop(T, r) and σ̂2
pop(T, r), calculated analytically from those for ψ̂site(T, r)

(best fit and 95% confidence interval), are also overlayed to the corresponding histograms.

5



F (Figure S4), where the empirical distribution for 〈ψ̂〉pop(T, r) spans the interval (0.1, 0.5), and

the empirical distribution for σ̂2
pop(T, r) covers almost all the available interval (0, 0.25). As

explained in the manuscript, the initial, nominal treatments were accordingly dropped in favour

of a pooled analysis.

Fitting a model for heterogeneity

We show here how within-treatment heterogeneity in transmissibility can be modelled within a

hierarchical Bayesian framework [2]. We assume that the value of the transmissibility ψsite(T, r)

is drawn for each r from a prior distribution (a “hyperprior” [2]), and that the parameters of

such distribution depend on T only. A Beta distribution was chosen as the hyperprior:

Beta(ψsite; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
ψ a−1
site ψ

b−1
site , (S6)

where Γ is the Euler Gamma function, and a, b > 0 depend on T .

The parameters of the distribution (S6) were estimated for each treatment T . We used an

“empirical” Bayes method [5], and fitted the distribution to the individual estimates ψ̂site(T, r)

(whereas a “fully Bayesian” method would involve including the hyperprior distribution from the

start in the MCMC estimation [2]). Table S3 shows the estimated parameters a and b (best fit

and 95% C.I.). The curves corresponding to the best-fit parameters (together with the curves

corresponding to the 95% C.I. for a and b) are shown in Figure S4, overlayed to the histograms.

The distributions for 〈ψ̂〉pop(T, r) and σ̂2
pop(T, r) (also shown in Figure S4) can be calculated

analytically from the Beta distribution for ψ̂site(T, r) and from manuscript Equation 1 using

standard methods [6]. The Beta distribution accounts for the asymmetry in the histograms for

treatments E and F (Figure S4); the mode and absolute value of the best-fit distributions increase

consistently from treatment A to treatment F (Table S3).

Treatment a b mean mode std skewness

A 19.5 (8.85, 43.1) 14.1 (7.2, 27.5) 0.58 0.59 0.08 −0.11

B 14.2 (6.53, 31.1) 8.69 (4.33, 17.5) 0.62 0.63 0.1 −0.2

C 8.83 (5.39, 14.5) 5.09 (3.27, 7.93) 0.63 0.66 0.12 −0.27

D 15.2 (9.39, 24.5) 7.78 (5.77, 10.5) 0.66 0.68 0.1 −0.27

E 4.62 (2.1, 10.2) 1.97 (1.12, 3.45) 0.70 0.79 0.17 −0.57

F 5.87 (3.41, 10.1) 1.72 (0.93, 3.18) 0.77 0.87 0.14 −0.8

Table S3: Fitting a model for heterogeneity. Parameters a and b of the Beta distribution
(S6) used to model heterogeneity in ψsite(T, r) within each treatment. Best-fit parameters are
in bold, 95% confidence intervals in parentheses. The curves corresponding to these parameters
are plotted in panels of the left column of Figure S4. The mean, mode, standard deviation (std),
and skewness values refer to the best-fit distribution.
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