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Evidence for composite cost functions in arm movement planning:
an inverse optimal control approach

Bastien Berret, Enrico Chiovetto, Francesco Nori and Thierry Pozzo

In this document, we define the general settings used to formulate the optimal control problems (OCPs,
Section 1). Section 2 provides insights on how to solve and/or to convert the original models in our framework.

1 General settings and framework

Let us recall that the dynamical system under consideration corresponds to a two-joint and planar arm and
is of the form (Σ):

limbmechanics τ =M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + F θ̇

actuator dynamics τ̈ = µ
(1)

More precisely, writing the matrixM = (Mij)1≤i,j≤2 , similarly for F and C and the vector G = (Gi)1≤i≤2,
we have:

M11 = m1l
2
c1 + I1 +m2l

2
c2 + I2 +m2(l21 + 2l1lc2 cos θ2),

M12 = m2l
2
c2 + I2 +m2l1lc2 cos θ2,

M21 = M12,

M22 = m2l
2
c2 + I2,

c = m2l1lc2 sin θ2

C11 = −2θ̇2c,

C12 = −θ̇2c,

C21 = θ̇1c,

C22 = 0,
G1 = g{m1lc1 cos θ1 +m2(lc2 cos(θ1 + θ2) + l1 cos θ1)},
G2 = gm2lc2 cos(θ1 + θ2),
Fij = constants.

(2)

The numerical values for the above quantities can be found in Table S1, which comes from Winter’s docu-
mented tables [1].
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notation description value and unit
Ms total mass of the subject measured, kg
Ls height of the subject measured, m
m1 mass of the upper arm ≈Ms × 0.028 kg
m2 mass of the forearm (+hand) ≈Ms × 0.022 kg
l1 length of the arm ≈ 0.186× Ls m
l2 length of the forearm ≈ (0.146 + 0.108)× Ls m
lc1 length from shoulder to center of mass of the arm ≈ l1 × 0.436 m
lc2 length from shoulder to center of mass of the forearm ≈ l2 × 0.682 m
I1 inertia with respect to center of mass of the arm ≈ m1 × (l1 × 0.322)2 kg.m2

I2 inertia of the forearm w.r.t center of mass of the forearm ≈ m2 × (l2 × 0.468)2 kg.m2

g gravity acceleration ≈ 9.81 m.s−2

Table S1: Anthropometric parameters taken from [1] and gravity acceleration.

We also impose the following constraints to keep state and control values within biological bounds:

−π ≤ θ1 ≤ π , 0 ≤ θ2 ≤ π rad,
−10 ≤ θ̇1, θ̇2 ≤ 10 rad.s−1,

−100 ≤ τ1, τ2 ≤ 100 N.m,
−500 ≤ τ̇1, τ̇2 ≤ 500 N.m.s−1,

−5000 ≤ µ1, µ2 ≤ 5000 N.m.s−2.

(3)

For a deterministic OCP, Pontryagin’s maximum principle (PMP) provides necessary conditions for opti-
mality and the under-determination of the final point is resolved by means of the transversality conditions.
When relevant and possible, the PMP was used to verify the validity of the solutions found by the numerical
technique we employed (GPOPS) during inverse optimal control. For certain models/costs (trajectory opti-
mization, geodesic...), we also compared those solutions with the ones obtained from the original method, as
described by their respective authors. Nevertheless the general and unified framework provided here allowed
to compare several existing models and to apply the inverse optimal control algorithm described in the main
text.

2 Solutions to the optimal control problems

2.1 Preliminary: necessary conditions for optimality

A general necessary condition for optimality is provided the maximum principle ([2, 3]). We will first neglect
the state constraints and just check them a posteriori.

Clarke’s version of PMP

Consider a control system q̇ = f(q,u) with a cost of the form C(u) =
´ T

0 g(q,u)dt where f and g are smooth
and Lipschitz-continuous functions, respectively. The goal is to connect an equilibrium source point qs to an
equilibrium point of the target manifold B = {q ∈ R8 such that m(q) = 0}.
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If the control u ∈ U is optimal then there exists a non-trivial absolutely continuous mapping (p(.), λ) :
[0, T ]→ Rn×R+ called adjoint vector, where λ is a non-negative constant, such that the trajectory associated
to control u verifies the following conditions :

q̇ = ∂H
∂p (q,p,u)

ṗ ∈ −∂qH(q,p,u)
(4)

where H(q,p, λ,u) =< p, f(q,u) > +λg(q,u) is the Hamiltonian of the system, and moreover :

H(q,p, λ) = min
u
H(q,p, λ,u) (5)

In addition, the transversality condition must hold at the terminal point, i.e., p(T ) ⊥ Tq(T )B.

In the above statement, ∂qH(q,p,u) denotes the Clarke’s generalized gradient for locally Lipschitz functions,
i.e., the convex hull of all possible limits of derivatives of H at points qn ∈ R8 with qn → q [3]. Note that if
all the quantities involved are smooth, the generalized gradient reduces to the classical differentiation.

In our experiment, the target bar was characterized by the following manifold:

m : q =



θ1

θ2

θ̇1

θ̇2

τ1

τ2

τ̇1

τ̇1


7→m(q) =



l1 cos θ1 + l2 cos(θ1 + θ2)− 0.85L
θ̇1

θ̇2

τ1 − G1(θ1, θ2)
τ2 − G2(θ1, θ2)

τ̇1

τ̇2


. (6)

The first row of the mapping m defines the geometric target bar constraint, while the remaining rows account
for the fact that the terminal point is an equilibrium point for the arm dynamics. In particular, the joint
torques have to counteract the gravitational torques.

The transversality condition means that the adjoint vector at final time should be a linear combination of
the gradient vectors ∂m1

∂q |q(T )
, ..., ∂m7

∂q |q(T )
(indeed, since all gradients vectors are orthogonal to the tangent

plane at point q). In particular det(p(T ), ∂m1
∂q |q(T )

, ..., ∂m7
∂q |q(T )

) = 0 is a necessary and sufficient condition
that satisfies the transversality condition.

The maximum principle leads to the problem of finding the values of p(t = 0) and p(t = T ) that satisfy the
conditions m(q) = 0 and p(T ) ⊥ Tq(T )B. Note that one has to calculate u(q,p, λ) = arg minuH(q,p, λ,u)
so that, indeed, we obtain a boundary value problem.

2.2 Computation of the optimal solutions for the different models/costs

The numerical inverse optimal control method required formulating different models within a single class
of optimal control problems. To this aim, the original models were sometimes slightly modified to fit in a
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unified framework. We checked, as described below, that the arm trajectories provided by these reformulated
problems were nevertheless consistent and close enough to the original solutions.

2.2.1 Minimum hand jerk, angle jerk, and angle acceleration models

All these problems, involving kinematic costs, are independent on the system dynamics, and were originally
formulated as trajectory optimization problems. For instance, the minimum Cartesian hand jerk problem
was solved by [4], by applying Euler-Lagrange necessary conditions for optimality.

Consider a minimum jerk problem. Let v be some variable whose jerk has to be minimized, i.e. we seek
for v = arg minv

´ T

0 ||
d3v
dt3 ||2dt, under the constraint of connecting an equilibrium source point vS to an

equilibrium terminal point vT in time T . Then it is well-known that the optimal path is given by a 5th order
polynomial:

v?(s) = vS + (vS − vT )(15s4 − 6s5 − 10s3), (7)

with s = t
T . In a subsequent step, inverse dynamics computations are required if one wants to obtain the

corresponding control action or torques.

Moreover, in this study, the terminal state is not a point but a manifold (the bar, denoted by B). We
used a straightforward approach to solve this problem, that is to seek for the final point on the bar that
yields the minimum cost. To this aim, we solved a non-linear constrained optimization problem. Defining
C(vT ) =

´ T

0 ||
d3v?

dt3 ||2dt, the terminal point on the bar is simply given by vT = arg min
vT

C(vT ). The constraint
is that the terminal point on the bar has to be within the reachable region of the arm. In fact, it is seen that
these models lead to the shortest possible path to the manifold, in the space on which the variable v is lying.

It is worth noting that the above optimal trajectory v is not necessarily admissible for the dynamical system
(Σ). In fact, in the framework provided by the system (Σ), these models could also be treated as classical
OCPs. Therefore, we also solved these OCPs using numerical techniques for optimal control (such as GPOPS,
[5]). These two methods yielded identical solutions for what concerned the finger paths.

2.2.2 Geodesic model

Following the original formulation of [6], we treated the problem by separating its spatial and temporal
aspects. Firstly, geodesics are found by solving a boundary value problem. Here geodesics are meant with
respect to the kinetic energy metric of the arm. Secondly, the time course of the finger is derived from a
minimum jerk velocity profile. Then, to solve our particular reaching-to-a-bar problem, we discretized the
bar every 0.5 cm and solved the problem for all points, similarly to what was done for 3-D arm movements
in [6] (in which the problem of free final point occurred as well). We selected the best terminal point, i.e.
the one associated to the minimal geodesic length.

As pointed out previously, the optimal solution obtained using this method may not be admissible for the
system (Σ). Therefore, we also formulated this problem as an OCP and solved it numerically using GPOPS.
This led to the same geometric paths (although not the same time courses).
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2.2.3 Smooth OCPs: the minimum torque change example

In this subsection, we deal with smooth OCPs which can be solved by applying the PMP. Here and in the
next subsection, a sketch of the procedure for establishing the necessary conditions for optimality using the
PMP is given.

Before going further, let us rename the variables as follows:

x1 = θ1, y1 = θ̇1, x2 = θ2, y2 = θ̇2, z1 = τ1, z2 = τ2, w1 = τ̇1, w2 = τ̇2,

u1 = µ1, u2 = µ2.
(8)

The control system can thus be rewritten as:

ẋ1 = y1

ẋ2 = y2

ẏ1

ẏ2
=M−1

((
z1 + c(y2

2 + 2y1y2)− G1

z2 − cy2
1 − G2

)
−F

(
y1

y2

))
ż1 = w1

ż2 = w2

ẇ1 = u1

ẇ2 = u2

. (9)

For any x2,M is always invertible. We set

M−1 =
(
M̄11 M̄12

M̄21 M̄22

)
. (10)

The explicit expression of the elements ofM−1 is:

d = m1l
2
c1m2l

2
c2 + (m1l

2
c1 +m2l

2
1)I2 + I1(m2l

2
c2 + I2)

+m2
2l

2
1l

2
c2(1− cos2 x2),

(11)

and:

M̄11 = m2l
2
c2 + I2

d
,

M̄12 = M̄21(x2) = −m2l
2
c2 +m2l1lc2 cosx2 + I2

d
,

M̄22 = m1l
2
c1 + I1 +m2l

2
1 +m2l

2
c2 + 2m2l1lc2 cosx2 + I2

d
. (12)

Following the current notations, the integral cost for the minimum torque change is:

C4 =
T̂

0

w2
1 + w2

2dt. (13)

The Hamiltonian function is:
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H = λ{w2
1 + w2

2}+ p1y1 + p2y2 + q1ẏ1 + q2ẏ2

+r1w1 + r2w2 + s1u1 + s2u2.
(14)

As usual in the resolution of OCPs, singular extremals (λ = 0) and regular extremals have to be considered.
Let us recall that a bang extremal is an extremal such that, for almost all time, one of the control component,
ui, can take the two values umax

i or umin
i only. Here, it can be shown that singular extremals are necessarily

bang (in other words, there is no abnormal extremal). In particular, for an abnormal extremal, the adjoint
vector would vanish which would contradict the PMP. Indeed, the following chain of implications would
occur: s ≡ 0 ⇒ r ≡ 0 ⇒ q ≡ 0 ⇒ p ≡ 0 (the key point being the invertibility of M). There are thus only
two kinds of extremals in this OCP: singular bang extremals, associated with discontinuous controls, and
regular extremals. Next, we consider regular extremals. By a standard argument of normalization for the
adjoint vector, we can set λ = 1.

In that case the adjoint equations are:



ṗ1 = − ∂H
∂x1

= −q1
∂ẏ1
∂x1
− q2

∂ẏ2
∂x1

ṗ2 = − ∂H
∂x2

= −q1
∂ẏ1
∂x2
− q2

∂ẏ2
∂x2

q̇1 = − ∂H
∂y1

= −p1 − q1
∂ẏ1
∂y1
− q2

∂ẏ2
∂y1

q̇2 = − ∂H
∂y2

= −p2 − q1
∂ẏ1
∂y2
− q2

∂ẏ2
∂y2

ṙ1 = − ∂H
∂z1

= −q1
∂ẏ1
∂z1
− q2

∂ẏ2
∂z1

ṙ2 = − ∂H
∂z2

= −q1
∂ẏ1
∂z2
− q2

∂ẏ2
∂z2

ṡ1 = − ∂H
∂w1

= −r1 − 2w1

ṡ2 = − ∂H
∂w2

= −r2 − 2w2

. (15)

A necessary condition for optimality is the minimization of H along a trajectory. The optimal control has to
satisfy: (u1, u2) = arg minu1,u2 H(x1, . . . , w2, p1, . . . , s2, u1, u2). Note that for autonomous systems and fixed
time the Hamiltonian remains constant along the optimal trajectory.

When a component of the commutation function is not zero, the control is bang and simply given by:

ui = umax
i if si < 0,

= umin
i if si > 0.

(16)

However, it could happen that si ≡ 0 on a non-trivial time interval. In such a case, we would get ṡi ≡ 0 and
thus, from Equation 15: wi ≡ − 1

2ri.

But ui = ẇi from Equation 9. Therefore, we get:

ui = − 1
2 ṙi

= 1
2 (q1

∂ẏ1
∂zi

+ q2
∂ẏ2
∂zi

).
(17)

Consequently, regular extremals may switch from bang pieces of trajectories to non-bang ones, at times t
where (si(t), ṡi(t)) = (0, 0). In general a switching time t results from the condition si(t) = 0. Here, the
control vector (u1, u2) might have discontinuities. Notice that, in contrast, the state and adjoint vectors are
continuous, just as classical solutions of differential equations and assuming that the boundary values on the
state variables are not active (which is checked a posteriori).
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In practice, we solved this problem with high precision by using the following procedure:

• Initialize the shooting method with a good guess of the optimal solution structure (adjoint vector,
commutation times, control sequence etc.). Note that in practice a shooting problem can reveal itself a
difficult computational challenge because the radius of convergence may be quite small. The standard
approach is to initialize the shooting method by using a guess arising from a numerical optimal control
technique.

• Use a Gauss-Newton method to solve the resulting two-point boundary value problem, in which the
unknowns are the final adjoint vector, the commutation times, and the terminal position on the bar.

The optimal solution for the starting posture P3 is depicted in Figure S1. It is clear that the necessary
conditions are met with a very good precision. Since we only found one extremal meeting these conditions,
this extremal was expected to be the global optimal solution. Numerical simulations using GPOPS confirmed
this result and revealed that the numerical method was accurate to find the arm trajectories to the bar.

Similar analytical calculations can be performed for the minimum torque and effort models. However, for
costs including the absolute work, i.e. a nonsmooth cost, the scenario can be generally more complex as
explained below.
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Figure S1: Illustration of the results given by the PMP for the minimum torque change model. A. Stick
diagram and finger path. One can check that the terminal adjoint vector is orthogonal to the tangent plane
to the manifold at the terminal state. B. State time-series. C. Costate (adjoint) time-series. Note that the
commutation functions given by s1 and s2 are in fact equal to zero during the main part of the motion. D.
Control and Hamiltonian function. One can also check that the Hamiltonian is constant and that the control
strategy is of type “bang-regular-bang” (with very short bang pieces of trajectory).

7



2.2.4 Nonsmooth OCPs: costs including the minimum absolute work.

Considering nonsmooth costs (i.e. not differentiable) substantially complicates the problem of solving an
optimal control problem. However, non-differentiality arises naturally when computing the mechanical energy
expenditure of a movement. This involves a quantity such as the absolute work of torques (for the energy and
hybrid models). A comprehensive mathematical study was provided by [7] for costs involving the absolute
work of torques. Such costs imply the use of a nonsmooth version of the PMP [3].

Using the same notations as above, the hybrid cost can be written as:

C =
T̂

0

|z1y1|+ |z2y2|+ α(ẏ2
1 + ẏ2

2)dt = C7 + αC3. (18)

The corresponding Hamiltonian function is:

H = λ{|z1y1|+ |z2y2|+ α(ẏ2
1 + ẏ2

2)}+ p1y1 + p2y2 + q1ẏ1 + q2ẏ2 + r1w1 + r2w2 + s1u1 + s2u2. (19)

Again, it can be shown that singular extremals are normal. Thus there are only two kinds of extremals in
this OCP: singular bang extremals and regular extremals. Next, we consider regular extremals. Let us set
λ = 1, as above.

In that case the adjoint equations of Clarke’s extension of the PMP are:



ṗ1 = − ∂H
∂x1

= −2α(ẏ1
∂ẏ1
∂x1

+ ẏ2
∂ẏ2
∂x1

)− q1
∂ẏ1
∂x1
− q2

∂ẏ2
∂x1

ṗ2 = − ∂H
∂x2

= −2α(ẏ1
∂ẏ1
∂x2

+ ẏ2
∂ẏ2
∂x2

)− q1
∂ẏ1
∂x2
− q2

∂ẏ2
∂x2

q̇1 ∈ − ∂H
∂y1

= −2α(ẏ1
∂ẏ1
∂y1

+ ẏ2
∂ẏ2
∂y1

) + I|z1| − p1 − q1
∂ẏ1
∂y1
− q2

∂ẏ2
∂y1

q̇2 ∈ − ∂H
∂y2

= −2α(ẏ1
∂ẏ1
∂y2

+ ẏ2
∂ẏ2
∂y2

) + I|z2| − p2 − q1
∂ẏ1
∂y2
− q2

∂ẏ2
∂y2

ṙ1 ∈ − ∂H
∂z1

= −2α(ẏ1
∂ẏ1
∂z1

+ ẏ2
∂ẏ2
∂z1

) + I|y1| − q1
∂ẏ1
∂z1
− q2

∂ẏ2
∂z1

ṙ2 ∈ − ∂H
∂z2

= −2α(ẏ1
∂ẏ1
∂z2

+ ẏ2
∂ẏ2
∂z2

) + I|y2| − q1
∂ẏ1
∂z2
− q2

∂ẏ2
∂z2

ṡ1 = − ∂H
∂w1

= −r1

ṡ2 = − ∂H
∂w2

= −r2

, (20)

with I = [−1, 1], coming from Clarke’s generalized gradient.

Here, the nonsmooth maximum principle leads to differential inclusions for the adjoint vector at points where
H is not continuously differentiable. These points are those for which yizi vanishes (i.e., when the power
of torques becomes zero). The optimal scenario can be quite complex because there may exist pieces of
trajectory such that yi ≡ 0 and/or zi ≡ 0, for which only inclusions are given by the maximum principle. In
such a case, higher order derivatives of yi and zi should be considered to get the control expression.

However, based on the exact solutions derived for the torque-control case in [8] and on numerical simulations,
it appears that the optimal strategy is generally similar to what happens for the minimum torque change
model presented above: constraints on the control are active only at the beginning and at the end of the
movement, and last for a very brief period of time if umax

i and umin
i are large enough. Thus, most of the time,

the optimal trajectory is a regular extremal and, in particular, we have si ≡ 0. Thus, ui can be determined
using the fact that ri ≡ 0 and that, in turn, ṙi = 0 ∈ −2α(ẏ1

∂ẏ1
∂zi

+ ẏ2
∂ẏ2
∂zi

)+I|yi|−q1
∂ẏ1
∂zi
−q2

∂ẏ2
∂zi

, along such a
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piece of trajectory. This inclusion is an equality if zi 6= 0. The control ui can be determined by differentiating
the latter expression. Otherwise, zi ≡ 0 and, thus, a necessary condition for optimality is that zero belongs
to a certain time-varying interval. This was referred to as an “inactivation” in [8]. In that case, we have
necessarily wi ≡ 0 and, in turn, ui ≡ 0.

Remark: When the optimal control is discontinuous, one would rather avoid the use of collocation methods
since they rely on global polynomial interpolation. An alternative method is to use a direct transcription
of the OCP (with a trapezoidal Euler’s discretization scheme for instance). In that case, the control is
approximated by a piecewise constant function. Nevertheless, we noted that collocation methods yielded
quite precise finger trajectories by comparing with the exact solutions derived from the PMP. In fact, the
error only increased significantly for higher order variables such as for the torque change or control vectors
but we focused our analysis on the hand paths and velocities. However, it was still possible to guess the
optimal scenario, allowing in turn the use of the shooting method described above. Finally, in order to deal
with nonsmooth costs using numerical techniques, the absolute value function was replaced by the smooth
function: z 7→ tanh(10z)z. This is because NLP methods are generally gradient-based.
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