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I. INTRODUCTION

We aim at a mathematical formalism that allows to judge whether a multiple-input-

multiple-output reaction network is robust against large perturbations of network param-

eters. In addition to identify design principles for robust signal processing, the formalism

should indicate the necessary network modifications and extensions to arrive at a robust

network output for specific perturbations, when starting from a non-robust network. In par-

ticular, our formalism builds upon the structural properties of a (bio)chemical network, as it

is the network architecture and not ’fine-tuning’ of parameters that allows for the compensa-

tion of large perturbations. Our results show that the robustness of a signaling network can

be judged by inspection of a linear vector space: We demonstrate that for each biochemical

network, there exists a linear vector space, such that any perturbation (expressed as a vector

of partial logarithmic derivatives) that is confined to this vector space leaves the output of

the network, as defined by a set of stationary concentrations of designated output variables,

invariant. One of our main achievement is to identify which part of this vector space is

independent of kinetic parameters (corresponding to global concentration robustness) and

which part of this vector space is dependent on kinetic parameters (corresponding to local

concentration robustness and requiring fine-tuning of parameters). The former is denoted

as the invariant perturbation space of the network and can be algorithmically constructed

for any signaling network.

Our framework provides a counterpoint to the hypothesis that cellular function relies on an

extensive machinery to fine-tune or control intracellular parameters. Rather, our framework

suggests that there exists an appropriate topology that renders the network output insus-

ceptible to a given class of perturbations. Our framework draws upon and extends concepts

of (metabolic) control theory. The reader familiar with nonlinear control theory will dis-

cover some parallels to the concept of disturbance decoupling. Within this Supplementary

Information, we first outline our framework in more detail, point out pitfalls, and provide

additional examples. A mathematical rigorous treatment is given in Section IV.
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II. DETERMINATION OF THE INVARIANT PERTURBATION SPACE

A. Biochemical networks without conserved moieties

We first illustrate our concept using the special case of a biochemical network without con-

served moieties. The biochemical network is assumed to consist of m independent dynamic

state variables, x = (x1, ..., xm), whose temporal evolution is determined by a differential

equation of the form,

ẋ = N · v (1)

with v = (v1, ..., vk) a k-dimensional vector of reaction fluxes and N the stoichiometric

matrix. We require that the rank of the stoichiometric matrix equals the number of state

variables, rank(N ) = m, that is, N does not contain any linearly dependent rows. The

functional forms of the reaction fluxes v(x,p) describe the dependencies of reaction rates

on compound concentrations and parameters. The latter may include a set of signals that

represent the functional input of the system. At the most basic level, the rate equations are

given by generalized mass-action (GMA) kinetics of the form

vi(x) = ki

n∏

j=1

x
αij

j , (2)

with αij denoting the kinetic exponents that do not necessarily have to take integer values.

With respect to the state variables, we further distinguish between a set of output state

variables, defined as xA, and a set of intermediate state variables, xM. As the prerequisite

for robustness, we require that the output states are invariant under perturbations, that

is, ∆xA = 0, where ∆xA denotes the difference in the output variables after and before a

perturbation ∆pj on network parameters.

In the following, we assume the existence of a (not necessarily unique) asymptotically stable

stationary state xs with N · v(xs) = 0. We further assume that the functionality of the

network is encoded in the stationary dependence of the designated output variables, xA, on

a set of input parameters.

We expand the stationary form of the Eq. (1), N · vs = 0, with vs := v(xs), to linear order

in both the perturbations, ∆pj, that change network fluxes vs
i (pj) → vs

i (pj + ∆pj) and the

resulting changes in the state variables ∆x,

0 = N · diag(vs) ·
(
P · ∆p̂ + M · ∆x̂M + A · ∆x̂A

)
(3)
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with diag(vs) denoting a square matrix with entries vs on the diagonal and the expansion

coefficients

Pij :=
pj

vs
i

∂vs
i

∂pj

, Mij :=
xM

j

vs
i

∂vs
i

∂xM
j

, Aij :=
xA

j

vs
i

∂vs
i

∂xA
j

. (4)

The relative perturbations and its responses are defined as (∆p̂)i = ∆pi/pi, (∆x̂M)i =

∆xM
i /xM

i , and (∆x̂M)i = ∆xA
i /xA

i . We note that if the reaction fluxes follow the functional

form given in Eq. (2), the expansion coefficients are given by the constant kinetic coefficients

αij.

In the absence of the condition ∆x̂A = 0, the expansion Eq. (3) always has a unique

solution ∆x̂ that quantifies the local linear response to an infinitesimal perturbation in

parameters. The existence of the solution is guaranteed by the fact that the Jacobian of the

system is of full rank and hence invertible – a condition that is extensively utilized within,

for example, Metabolic Control Analysis [3, 7].

However, our requirement of robustness ∆x̂A = 0 removes those degrees of freedom that

correspond to (changes in) the output variables x̂A. As a consequence, only the set of

intermediate variables x̂M is able to compensate the perturbations. In this case, Eq. (3)

translates into the condition

N · diag(vs) · P · ∆p̂ = −N · diag(vs) · M · ∆x̂M . (5)

In general, Eq. (5) is overdetermined, that is, no solution exists, hence the condition ∆xA =

0 cannot be fulfilled. Eq. (5) has a unique solution ∆x̂M if and only if at least one of the

following two conditions holds: Either the columns of the matrix P are elements of the right

nullspace of the matrix N ·diag(vs), with N ·diag(vs) ·P = 0. Then, necessarily, ∆x̂M = 0.

Or, the columns of the matrix P are linearly dependent on the columns of the matrix M .

In mathematical terms, these two conditions can be summarized in the equation

rank(P |M |K) = rank(M |K) . (6)

Here, the columns of K span the right nullspace of N · diag(vs), such that

N · diag(vs) · K = 0. The notation (M |K) denotes a concatenation of the columns of the

matrices M and K. Equation (6) expresses the condition that each column vector of the

matrix P must be linearly dependent on the column vectors of (M |K).

We note that, considering again the full system in Eq. (3), the concatenated matrix

(A|M |K) is square and of full rank. This property again reflects the fact that there
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exists a local linear response in the systems variables for any local perturbation in the rate

equations – a consequence of the Jacobian being invertible. Conversely, the concatenation

(M |K) is not of full rank, hence Eq. (6) cannot be fulfilled for arbitrary perturbations.

However, if Eq. (6) is fulfilled, then the system indeed exhibits local concentration

robustness, as defined by ∆x̂A = 0. Here, we emphasize that the linear system Eq. (3) has

(locally) a unique solution. Hence, if a solution with ∆x̂M 6= 0 and ∆x̂A = 0 is identified

as a possible solution of the system, it necessarily corresponds to the only solution of the

linear perturbation problem.

In addition to the rank condition Equation (6) given above, an equivalent condition for

local concentration robustness can be stated in terms of linear vector spaces. To this end,

we denote by colsp P the column space of the matrix P , that is, the vector space that is

spanned by the columns of P . Further, we define by colsp(M |K) := colsp M + colsp K

the joint linear vector space spanned by the columns of M and K. An equivalent condition

to Eq. (6) is then given by demanding all column vectors of P to be elements of this

subspace colsp P ⊆ colsp(M |K). A special case is given by colsp P ⊂ colspK, that is a

perturbation vector that is a subset of the nullspace necessarily implies perfect robustness

of all state variables ∆x = 0 with respect to this perturbation. This fact is also known

from Metabolic Control Analysis.

As yet, the conditions for local concentration robustness were derived with respect to

infinitesimal perturbations at a particular state xs. In general, the matrices M and K

will depend on the particular state at which the expansion was performed – hence Eq. (6)

does not represent a sufficient condition for global robustness. In the following, as one of

the major achievement of our work, we will derive the architectural requirements on the

network that ensure that Eq. (6) is fulfilled independent of the particular stationary state,

hence the system allows for global concentration robustness in the face of perturbations

of large magnitude. Prior to this step, we briefly extend our analysis to networks that

incorporate mass-conservation relationships.
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B. Biochemical networks with conserved moieties

Most models of biochemical networks exhibit conserved moieties that usually arise from

an approximation of slowly changing components by constant quantities. In this case, the

system of differential equations for the independent state variables, x = (x1, ..., xm) is aug-

mented by a set of dependent state variables xD, whose values are determined by n mass

conservation equations. The full system of equations governing the time evolution of the

system is

ẋ = N · v
(
x,xD

)
(7)

xT = L · x + xD , (8)

with the vector xT = (xT
1 , xT

2 , ..., xT
n ) denoting the total concentration of each molecular

component. The matrix L has dimension n × m and the vector xD =
(
xD

1 , ..., xD
n

)
denotes

the state variables that are determined by the conservation equations. The differential form

of the mass conservation equations, Eq. (8), is given by ∆xD = −L · ∆x. With respect

to the independent state variables x we again distinguish between a set of intermediate

state variables xM and the output state variables xA each typically representing different

protein modification states or protein complexes. As above, we assume the output states

to be invariant under perturbations, hence ∆xA = 0, and expand the stationary form of

the Eq. (7) to linear order in both the perturbations ∆pj and the resulting changes on the

intermediate states ∆xM

0 = N · diag(vs) ·
(
P · ∆p̂ + D · ∆x̂D + MD · ∆x̂M

)
, (9)

with expansion coefficients

Pij =
pj

vs
i

∂vs
i

∂pj

, Dij =
xD

j

vs
i

∂vs
i

∂xD
j

∣
∣
∣
∣
∣
xM=const

, MD
ij =

xM
j

vs
i

∂vs
i

∂xM
j

∣
∣
∣
∣
∣
xD=const

. (10)

The relative perturbations and its responses are again defined as (∆p̂)i = ∆pi/pi, (∆x̂D)i =

∆xD
i /xD

i , and (∆x̂M)i = ∆xM
i /xM

i . We emphasize that the changes in states ∆x̂D are

entirely determined by changes in the intermediate states, ∆x̂M , via the differential mass

conservation equation. Consequently, the dependent state variables do not represent addi-

tional degrees of freedom within the system and are not able to compensate perturbations.
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Rather, the associated matrix D must be considered as indirect perturbations on the net-

work that are induced by changes ∆xM .

In mathematical terms, we can use the differential mass conservation relationship to substi-

tute changes in the dependent variables by changes in independent intermediate variables,

∆x̂D = −L′′∆x̂M , where L′′ denotes a scaled link matrix such that

L′′ = diag(xD)−1 · L′ · diag(xM) (11)

and L′ is obtained from L by removing those columns that correspond to output variables.

The condition for invariance of the output Eq. (6) can then be written as

rank(P |MD − D · L′′

︸ ︷︷ ︸

M

|K) = rank(MD − D · L′′

︸ ︷︷ ︸

M

|K). (12)

Eq. (12) is the generalized rank condition for local invariance of the output variables with

respect to infinitesimal perturbations. A general definition of the matrix M is thus given

by

M := MD − D · L′′ . (13)

In absence of conservation equations, L = 0, we obtain the identity M = MD and thus

recover our previous result Eq. (6).

As observed in Eq. (13), mass conservation relationships induce additional elements (de-

pendencies) in the matrix of partial derivatives – a consequence of the substitution of the

dependent variables within the kinetic rate equations.

We illustrate this point with a simple example. Consider a canonical two-component signal

transduction network in bacteria, e.g. the EnvZ/OmpR system, where the histidine kinase

with total concentration ZT gets autophosphorylated and transfers the phospho-group to

the response regulator. The response regulator, with total concentration RT , is in turn

dephosphorylated proportional to the phosphatase activity of the histidine kinase, which is

proportional to Z.

Z
v1→ Zp

R + Zp
v2→ Z + Rp

Rp + Z
v3→ R + Z

(14)
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The system of differential equations for the independent variables is given as

d

dt




ZP

Rp



 =




+1 −1 0

0 +1 −1





︸ ︷︷ ︸

N

·








k1 Z

k2 Zp R

k3 Z Rp








︸ ︷︷ ︸

v

. (15)

The reaction network further satisfies the conservation equations

ZT = Z + Zp

RT = R + Rp

−→ L =




1 0

0 1



 , (16)

using the assignments xT = (ZT , RT ), x = (Zp, Rp) and xD = (Z,R), and assuming Rp as

the output variable of the pathway.

Utilizing the definitions given above, we then obtain

MD =











Zp

v1 0

v2 1

v3 0











and L′′ =




Zp/Z

0



 , (17)

hence the matrix M is given as,

M =











Zp

v1 0

v2 1

v3 0











−











Z R

v1 1 0

v2 0 1

v3 1 0











·




−α

0





︸ ︷︷ ︸

L′′

=











Zp

v1 α

v2 1

v3 α











, (18)

using the definition α := −Zp/Z = −Zp/(Z
T − Zp). As compared to the situation without

mass conservation relationships the matrix M contains additional elements, corresponding

to the implicit dependencies of the dependent variables. For example consider the element

(M )1, with

(M )1 =
∂ ln ν1

∂ ln Zp

=
Zp

ν1

∂
(
k1(Z

T − Zp)
)

∂Zp

= −
Zp

Z
. (19)

In Section VII A of this Supplementary Information we will consider two-component systems

and robustness against variation in total compound concentrations in more detail.
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C. From local to global robustness: The invariant perturbation space

The basis of our approach is the transition from local concentration robustness to a crite-

rion of global concentration robustness. In this respect, we require that the rank condition

for local concentration robustness is fulfilled at any stationary state and irrespective of the

kinetic parameters. Consequently, a perturbation that is large in magnitude may gradually

alter the stationary state of the system by affecting the set of intermediate variables xM

– however, the stationary concentrations of the set of designated output variables xA are

not affected. We note that in the following, unless otherwise stated, we always assume that

the system gives rise to a globally stable steady state for all parameters. As a consequence,

we assume the Jacobian to be invertible at each point in state-space. For a more formal

treatment see also Section IV.

The condition for local concentration robustness is given by Eq. (6),

rank(P |M |K) = rank(M |K) . (20)

The task is to ascertain whether the equation is fulfilled independent of kinetic parameters.

To this end, we recall that the rank of a matrix is unchanged under elementary matrix

operations (EMO), which are: (i) the exchange of any two columns (rows), (ii) the multi-

plication of a column (row) by the same non-zero factor, (iii) the addition of an arbitrary

multiple of one column (row) to another. Utilizing a series of EMOs, we aim to remove

explicit parameter dependencies from Eq. (6), thus obtaining a global structural condition

for concentration robustness.

To exemplify the application of EMO we continue with the example, a canonical two-

component system, discussed in Eq. (14). In addition to the matrix M , defined above,

we construct the right nullspace K of the scaled stoichiometry, consisting of one column

vector K = (β β β)T , with β := (v1)
−1. We are interested in concentration robustness of

the output variable Rp with respect to a perturbation p that affects both conserved total

concentrations, ZT = ZT (p) and RT = RT (p). In this case, the perturbation vector reads

P =











P

v1 γ

v2 δ

v3 γ











(21)
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with γ := ∂ ln v1/∂ ln p = ∂ ln v3/∂ ln p, and δ := ∂ ln v2/∂ ln p (but see also subsequent

sections for introductory examples). The rank condition is therefore given as

rank











P Zp K

v1 γ α β

v2 δ 1 β

v3 γ α β











= rank











Zp K

v1 α β

v2 1 β

v3 α β











, (22)

with M and α defined above. A parameter-independent representation is obtained by EMO











P Zp K

v1 γ α β

v2 δ 1 β

v3 γ α β











EMO
−→








0 0 1

1 1 0

0 0 1


















Zp K

v1 α β

v2 1 β

v3 α β











EMO
−→








0 1

1 0

0 1








. (23)

Obviously, the columns of (M |K) span a two dimensional plane that does not change its

orientation in the three dimensional space under changes in vs, xM , and kinetic parameters

that enter the equations via the expressions for α, β, γ, and δ. Thus any vector P that

lies within this plane fulfills the rank condition. In the example considered here the vector

P = (γ δ γ)T lies in the plane spanned by column vectors (0 1 0)T and (1 0 1)T .

Since the rank condition is fulfilled irrespective of the stationary state and kinetic pa-

rameters, the stationary network output, the variable Rp is globally robust with respect to P .

However, in general not all dependencies on the stationary state of the matrix (M |K)

can be removed by elementary matrix operations (EMO). We therefore define by I the space

spanned by the largest possible set of parameter independent column vectors of (M |K),

I = colsp(M ′|K ′) (24)

with (M ′|K ′) a reduced, maximally parameter free representation. We call I the invariant

perturbation space. The invariant perturbation space contains exclusively structural infor-

mation of a reaction network. Our approach therefore allows to separate the structural from

fine tuned network properties. In terms of robustness – as defined in this work – this means

that any perturbations P of the reaction fluxes that lie entirely in the invariant subspace

result in an invariant system output. If we define by (P ′|M ′|K ′) the matrix resulting from
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(P |M |K) after appropriate elementary matrix operations, then

colsp P ′ ⊆ I (25)

is a sufficient condition for structural robustness. For a rigorous definition see Section IV.

D. Modelling biochemical reaction networks

Our approach relies on an interpretation of the network structure in terms of the logarith-

mic partial derivatives of the kinetic rate equations. In particular, we utilize the fact that

the logarithmic partial derivatives are – for certain kinetic functions – a genuine structural

property of a reaction network.

At the most basic level kinetic rate equations are given by generalized mass-action functions

of the form

vi(x) = ki

n∏

j=1

x
αij

j , (26)

with the partial logarithmic derivatives given by

∂ ln vi

∂ ln xj

=
xj

vi

∂vi

∂xj

= αij and
∂ ln vi

∂ ln ki

=
ki

vi

∂vi

∂ki

= 1 . (27)

The partial logarithmic derivatives, corresponding the scaled elasticities of Metabolic Con-

trol Analysis (MCA), are restricted to constant (usually integer) values – corresponding to

the kinetic order of each reaction with respect to its substrates.

We emphasize that many deterministic biochemical reaction networks can be described at

the level of mass-action kinetics, such that all reaction equations comply with the functional

form given above. In this case, and in the absence of mass conservation relationships, the

columns of M are invariant under changes in rate constants and therefore already represent

global structural properties of the reaction network.

However, sometimes the computational description of biochemical networks requires nonlin-

ear equations – usually arising from approximations by rapid equilibrium or quasi steady

state assumptions. In this case, the respective logarithmic partial derivatives are dependent

on kinetic parameters and may take different values for different stationary states of the

system. For example, for a generic Michaelis-Menten equation,

v(x) =
Vmx

KM + x
, (28)
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we obtain
∂ ln v

∂ ln x
=

x

v

∂v

∂x
=

KM

KM + x
≤ 1 . (29)

In this case the partial logarithmic partial derivative is a non-constant quantity that

explicitly depends on kinetic parameters, as well as on the stationary state of the system.

Nonetheless, our framework is also applicable in this case – as shown in the previous sections.

We note that the requirements for a given network to exhibit global concentration robust-

ness depends to some extend on the interpretation of the logarithmic partial derivative. In

particular, we can distinguish between two scenarios with respect to the interpretation of the

logarithmic partial derivatives. Within the most strict assessment of global concentration

robustness, we can assume that all partial derivatives are unknown and possibly variable

quantities. This assumptions then also extend to generalized mass-action kinetics, such that

respective logarithmic partial derivatives are not necessarily assumed to be constant quanti-

ties. In this case, the system exhibits concentration robustness also in the face of deviations

from mass-action kinetics.

However, within a less stringent scenario – usually adopted within this work – we assume

that the partial derivatives of mass-action rates are constant quantities that are part of the

topology of the respective network. In this case, global concentration robustness may not

be guaranteed for possible deviations from the assumed exponents.

We emphasize that the distinction described here does not affect or restrict the application

of our framework to any actual topology – but rather it highlights that different assump-

tions on the nature of the rate equations may lead to different results with respect to global

concentration robustness. See also Section IV for further analysis.
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III. APPLICATION OF THE FORMALISM TO A SIMPLE REACTION NET-

WORK

To exemplify our formalism, we consider a simple example for output invariance, as shown

in Fig. 1 of the main text. Here, an output variable a is subject to slow perturbations P in

its synthesis rate. Rather than fine-tuning the value of p, we look for conditions, such that

an intermediate variable m compensates perturbations and ensures perfect robustness with

respect to the perturbation. The pathway is described by differential equations of the form

d

dt




a

m



 =




+1 −1 0 0

0 0 +1 −1





︸ ︷︷ ︸

N

·










v+a(p)

v−a(a,m)

v+m(a)

v−m










︸ ︷︷ ︸

v

. (30)

In the following, we require the system of differential equations to be well-defined, that is,

all rate equations comply with basic assumptions about biochemical rate equations and the

system gives rise to a positive steady state for any value of the perturbation P . Apart

from these basic requirements, our method does not require to further specify the precise

functional dependencies of the rate equations.

As depicted in Fig. 1 of the main text, the perturbation p acts on the rate v+a with an

(unspecified) nonlinear dependency v+a = v+a(p). The elements of the perturbation vector

P are defined as the logarithmic partial derivatives of the rate equations with respect to the

perturbation. We use the abbreviation η := ∂ ln v+a/∂ ln p and obtain

P =










η

0

0

0










. (31)

We emphasize that our analysis does not require knowledge of the precise value of η, which

usually depends on the specific functional form of the rate equations, the kinetic parameters,

and the strength of the perturbation.

To obtain a condition for perfect robustness of the variable a with respect to variations in

p, we follow the steps described in the main text. First, we determine the basis vectors of
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the nullspace of N · diag(vs). In practice any linear algebra software can be employed, such

as the built-in function null(N) in matlab (The MathWorks). These basis vectors form

the columns of the matrix K. For the simple example, Eq. (30), the space spanned by the

columns of K is given by

K = diag(vs) KN =










δ1 0

δ1 0

0 δ2

0 δ2










. (32)

with δ1 = (vs
1)

−1 = (vs
2)

−1 and δ2 = (vs
3)

−1 = (vs
4)

−1.

Next, we consider the matrix M , with elements corresponding to the logarithmic partial

derivatives of the rate equations with respect to the variable m. With the abbreviation

β := ∂ ln v−a/∂ ln m, evaluated at the stationary state, we obtain

M =










0

β

0

0










. (33)

We note that here the reactions v±m do only depend on the output variable a and not on

the variable m – a well-known prerequisite for perfect adaptation. Finally, we can assemble

the invariant subspace, I = col(M ′|K ′), using elementary matrix operations (EMO)

(M |K) =










0 δ1 0

β δ1 0

0 0 δ2

0 0 δ2










EMO
−→ (M ′|K′) =










0 1 0

1 1 0

0 0 1

0 0 1










. (34)

A parameter-independent representation I of the invariant perturbation space I is given by

I =










1 1 1

1 1 0

1 0 0

1 0 0










. (35)

In general the matrix representation I of the invariant perturbation space is not unique.

Any perturbation vector, P , that is element of the invariant perturbation space does not

14



affect the stationary output of the system. Output invariance is tested by the rank condition,

rank(P |I) = rank(I), that reads – after performing elementary matrix operations to remove

the unknown functional dependencies – as

rank










1 1 1 1

0 1 1 0

0 1 0 0

0 1 0 0










= rank










1 1 1

1 1 0

1 0 0

1 0 0










, (36)

The rank condition shows that the condition for global robustness of the output variable, a,

is fulfilled. The example implements an integral feedback mechanism to realize a perfectly

adapting reaction system. Here, the intermediate variable m acts as the ’integrator’, with

the crucial requirement that the rate of change of m is independent of the variable m

itself. In our example, this implies that the rates v±m do not depend on the variable m (or,

equivalently, that the dependence is with the same order) – otherwise perfect robustness

cannot be achieved.

Indeed, we can give a counterexample to robust behavior if we assume that the degradation

rate v−m = v−m(m) is a function of m. In this case, Eq. (33) is modified and now reads

M =










0

β

0

γ










, (37)

with γ := ∂ ln v−m/∂ ln m denoting the unknown nonzero derivative. We obtain

(M |K) =










0 δ1 0

β δ1 0

0 0 δ2

γ 0 δ2










. (38)

Since β and γ are both unknown and variable quantities, a parameter-independent repre-

sentation I of the invariant perturbation space is restricted to two dimensions,

I =










1 1

1 1

1 0

1 0










. (39)
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In this case, the rank condition does not hold,

rank










1 1 1

0 1 1

0 1 0

0 1 0










6= rank










1 1

1 1

1 0

1 0










, (40)

therefore the variable a does not exhibit global robustness.
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IV. FORMAL DERIVATION OF THE CONCENTRATION ROBUSTNESS CON-

DITION

A. Notation

In this section, we provide a rigorous mathematical derivation of the conditions for local

and global concentration robustness as obtained in Section II of the SI. Thereby, we consider

biochemical network models with conserved moieties, and with reaction rates that may be

a mixture of generalized mass action (GMA) with fixed exponents and arbitrary elements.

First, in Section IV B, we derive the previously described rank condition as sufficient and

necessary condition for local concentration robustness. Then, in Section IV C, to deal with

the problem of global concentration robustness, we define the invariant perturbation space

such that it is independent of the network’s parameters and the non-GMA part of the

reaction kinetics. Based on this definition, we derive a sufficient and (in a structural sense)

necessary condition for global concentration robustness.

For ease of notation, we will restrict this section to a scalar perturbation. However, this

is not a restriction of generality: if multiple perturbations are present, the condition can be

evaluated for each perturbation individually, and the network is robust against combined

perturbations if and only if it is robust against each perturbation individually.

The image of a matrix A is denoted by im A, its kernel by ker A. A diagonal matrix with

diagonal entries taken from the components of a vector a is denoted by dg a. The sum of

two subspaces W1 and W2 of R
n is defined by

W1 + W2 = {w1 + w2 | w1 ∈ W1, w2 ∈ W2}. (41)

A biochemical network model with conserved moieties is given by the differential algebraic

equations

ẋ = Nv(x, xD, p)

xT (p) = Lx + xD.
(42)

Thereby, x ∈ R
m is the vector of independent concentrations, N ∈ R

m×k the stoichiometric

matrix, and v the reaction rate vector. For the conserved moieties, we have xT ∈ R
n as the

vector of total concentrations, while xD is the vector of dependent state variables, related to

the independent state variables x via the link matrix L ∈ R
n×m [3]. We consider the effect

of a perturbation to the network via the variable p ∈ R, which is element of a connected and
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open set P ⊂ R. Note that we have explicitly accounted for the possibility that the vector of

total concentrations xT may depend on the perturbation variable p. The model (42) can be

transformed to an equivalent differential equation by substituting the dependent variables,

yielding

ẋ = Nv(x, xT (p) − Lx, p). (43)

The species vector x is split into output variables and intermediate variables by writing

x =




xA

xM



 , (44)

where xA ∈ R
mA

are the output variables and xM ∈ R
mM

are the intermediate variables.

According to this splitting, we introduce the matrices JA, JM ∈ R
m×m given by

JA =




ImA 0

0 0



 JM =




0 0

0 ImM



 , (45)

where Im is the identity matrix of dimension m, yielding



0

xM



 = JMx and




xA

0



 = JAx. (46)

We assume throughout that there exists a perturbation-dependent positive steady state

in the independent variables x, given by a function xs : R → R
m
+ , such that

Nv(xs(p), xT (p) − Lxs(p), p) = 0. (47)

The steady state map for the dependent state variables is defined as

xD
s (p) := xT (p) − Lxs(p). (48)

For ease of notation, we define

v̄(p) := v(xs(p), xD
s (p), p) (49)

as a shortcut for the steady state reaction rates.

Throughout this section, we assume that the steady state xs(p) is asymptotically stable

for all p ∈ P. Note that this implies that the Jacobian of the right hand side of (43) in

steady state,

N
∂v

∂x
(xs(p), xD

s (p), p) − N
∂v

∂xD
(xs(p), xD

s (p), p)L (50)

is invertible for each p ∈ P.
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B. Local concentration robustness

Local concentration robustness at a perturbation value p is defined as the property that

the derivative of the steady state output variables xA
s with respect to the perturbation is

equal to zero at p. The formal definition is given as follows.

Definition 1. The network (42) is said to have local concentration robustness at p ∈ P, if

JAx′

s(p) = 0. (51)

In order to derive a necessary and sufficient condition for local concentration robustness,

we introduce the following matrices:

P (p) = (dg v̄(p))−1
(∂v

∂p
(xs(p), xD

s (p), p) +
∂v

∂xD
(xs(p), xD

s (p), p)
∂xT

∂p
(p)

)

p

Q(p) = (dg v̄(p))−1 ∂v

∂x
(xs(p), p) dg xs(p)

D(p) = (dg v̄(p))−1 ∂v

∂xD
(xs(p), p) dg xD

s (p)(dg xD
s (p))−1L dg xs(p)

M(p) = (Q(p) − D(p))JM .

(52)

With these definitions, we next introduce the invariant perturbation space, a central

network characteristic for concentration robustness. In words, the invariant perturbation

space is the vector space of all infinitesimal directions in which perturbations can act on the

steady state reaction rates without affecting the concentration values in steady state. The

formal definition makes use of the matrices defined in (52) and is given as follows.

Definition 2. The space

I(p) = im M(p) + ker(N dg v̄(p)). (53)

is called the local invariant perturbation space of the network (42) at p.

We then have the following result as a condition for local concentration robustness of

network (42).

Theorem 1. The network (42) has local concentration robustness at p ∈ P, if and only if

P (p) ∈ I(p). (54)
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Proof. First, from differentiating the steady state equation (47) with respect to p we obtain

N
∂v

∂x
(xs(p), xD

s (p), p)x′

s(p)+N
∂v

∂xD
(xs(p), xD

s (p), p)
(∂xT

∂p
(p)−Lx′

s(p)
)
+N

∂v

∂p
(xs(p), xD

s (p), p) = 0.

(55)

We denote

H(p) = (dg xs(p))−1x′

s(p)p

and observe that JAx′

s(p) = 0 if and only if JAH(p) = 0. With the definitions from (52),

(55) is equivalent to

N dg v̄(p)
(
(Q(p) − D(p))H(p) + P (p)

)
= 0. (56)

Making use of the fact that JA + JM = I, we rewrite (56) as

N dg v̄(p)
(
(Q(p) − D(p))JAH(p) + M(p)H(p) + P (p)

)
= 0. (57)

Necessity. Under the condition that JAH(p) = 0, we find that

N dg v̄(p)M(p)H(p) = −N dg v̄(p)P (p). (58)

All P (p) which solve this equation are given by

P (p) = −M(p)H(p) + a1, (59)

with a1 ∈ ker(N dg v̄(p)), which implies (54).

Sufficiency. The condition (54) implies that we can write P (p) as

P (p) = a1 +
(
Q(p) − D(p)

)
a2, (60)

with a1 ∈ ker(N dg v̄(p)) and a2 ∈ im JM . Thus, one particular H(p) which solves (56) is

such that

JAH(p) = 0

JMH(p) = −a2.
(61)

Since the Jacobian (50) is invertible, (56) has a unique solution H(p) for each P (p), which

is given by (61). This proves local concentration robustness.
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C. Global concentration robustness

In the next step, we turn to the property of global concentration robustness. Essentially,

a network is said to have global concentration robustness if the output variables xA in

steady state are constant over the perturbation set P . In addition, we are interested in a

characterization of global concentration robustness which is given by the network structure

alone, and does not depend on exact parameter values and specific functions, for example

Michaelis-Menten or Hill kinetics, for generic reaction rates.

To this end, we separate reaction rates into a mass action and a generic part. Thereby, the

characterization of global concentration robustness should not depend on the rate constants

of the mass action part nor the exact choice of mathematical function of the generic part.

However, the characterization may depend on the interaction structure of the network,

i.e. which concentrations affect which reaction rate, and the stoichiometric coefficients of

the mass action part entering the reaction rate expression as exponents, which are both

attributed to the structure of the reaction network. Thus, in the following, the reaction rate

vector v is assumed to be composed by elements of the form

vi(x, xD, p) = Φi(x, xD, p)
m∏

j=1

x
aij

j

n∏

j=1

(xD
j )aD

ij , (62)

with i = 1, . . . , k, where Φi represents the generic part of the reaction rate and also includes

the rate constant for the mass action part, and the rest represent the concentration dependent

terms in the mass action part, with stoichiometric coefficients aij and aD
ij .

Before considering global concentration robustness, we first introduce the weaker notion

of concentration invariance, i.e. the property that the output concentrations are constant

over P , but not necessarily independent of network parameter values and choice of generic

reaction rate expressions.

Definition 3. The network (42) is said to have global concentration invariance, if xA
s (p) =

x̄A
s , a constant value, for all p ∈ P.

Corollary 1. The network (42) has global concentration invariance, if and only if

P (p) ∈ I(p) (63)

for all p ∈ P.
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Proof. Since P is connected and xs is assumed to be a continuously differentiable function

over P , the condition that xA
s (p) is constant over P is equivalent to

JAx′

s(p) = 0 (64)

for all p ∈ P. Then, the result is a direct consequence of Theorem 1: if (63) is satisfied, The-

orem 1 assures that (64) holds for any p ∈ P, thus we have global concentration invariance.

Conversely, if P (p̃) /∈ I(p̃) for some p̃ ∈ P, then by Theorem 1 it follows that JAx′

s(p̃) 6= 0,

and thus xA
s (p) is not constant over P .

We call (63) the rank condition for global invariance, since it can be tested numerically

by checking that rank(P (p)|I(p)) = rank I(p), where I(p) is a matrix whose columns span

the space I(p).

Next, we turn to the property of global concentration robustness. Note that concentration

invariance usually depends on the exact values of parameters, e.g. reaction rate constants ki,

in the network model, i.e. a network may have global concentration invariance for one set of

parameter values, but not for another set of parameter values. By the term global concentra-

tion robustness, we denote the property that a network has global concentration invariance

independently of parameter values. As a consequence, if a network has global concentration

robustness, all networks of the same structure, but potentially different parameter values,

have global concentration invariance (and robustness).

Concerning the mass action part of the reaction rates, the interaction structure of the

network is characterized by which stoichiometric coefficients are equal to zero. For the

further steps, a similar notion is also needed for the generic part of the reaction rates, and

is given by the following definition.

Definition 4. Two vector valued functions Φ, Φ̃ : R
q → R

k : y 7→ Φ(y), Φ̃(y) are said to be

structurally equivalent, if

∂Φi

∂yj

= 0 ⇔
∂Φ̃i

∂yj

= 0 (65)

for all i = 1, . . . , k and j = 1, . . . , q.

In the following, we will frequently consider a biochemical network with the same species

vectors x and xD as well as the same stoichiometric matrix N and link matrix L as the

original network (42), but with potentially different reaction rates and a different vector of
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total concentrations. This network is described by the equation

ẋ = Nṽ(x, xD, p)

x̃T (p) = Lx + xD,
(66)

where ṽ has elements given by

ṽi(x, xD, p) = Φ̃i(x, xD, p)
m∏

j=1

x
aij

j

n∏

j=1

(xD
j )aD

ij . (67)

The formal definition for global concentration robustness is as follows.

Definition 5. The network (42) is said to have global concentration robustness, if all net-

works of the form (66), where Φ̃ and x̃T are structurally equivalent to Φ and xT , respectively,

have global concentration invariance.

In what follows, we will derive a necessary and sufficient condition for global concentration

robustness based on the rank condition established above for global concentration invariance.

First, the following technical definition for structural properties of a function Φ is intro-

duced.

Definition 6. Given a matrix ϕ ∈ R
k×m and a function Φ : R

m → R
k, write ϕ ∈ S(∂Φ

∂x
) if

ϕij = 0 ⇔
∂Φi

∂xj

= 0 (68)

for all i, j.

The result on global concentration robustness uses the two matrices M and P defined as

follows, which depend on matrices ϕx ∈ R
k×m, ϕxD ∈ R

k×n, ϕxT ∈ R
n, ϕp ∈ R

k, and vectors

x ∈ R
m
+ , xD ∈ R

n
+.

M(ϕx, ϕxD , xD, x) = (ϕx + A − (ϕxD + AD)(dg xD)−1L dg x)JM

P (ϕxD , ϕxT , ϕp) = (ϕxD + AD)ϕxT + ϕp

(69)

Theorem 2. The network (42) has global concentration robustness, if and only if for all

α ∈ ker N , ϕx ∈ S(∂Φ
∂x

), ϕxD ∈ S( ∂Φ
∂xD ), ϕxT ∈ S(∂xT

∂p
), ϕp ∈ S(∂Φ

∂p
), x ∈ R

m
+ , and xD ∈ R

n
+

such that Lx + xD > 0

P (ϕxD , ϕxT , ϕp) ∈ im M(ϕx, ϕxD , xD, x) + ker(N dg α). (70)

23



Proof. Sufficiency: Consider a network given by the equations (66) with reaction rates as

in (67), where Φ̃ and x̃T are structurally equivalent to Φ and xT , respectively. Let xs(p)

and xD
s (p) be steady state concentrations of this network and v̄(p) the corresponding steady

state reaction rates. Define Φ̄(p) = Φ̃(xs(p), xD
s (p), p). Also define the following matrices:

ϕp = (dg Φ̄(p))−1∂Φ̃

∂p
(xs(p), xD

s (p), p)p

ϕx = (dg Φ̄(p))−1∂Φ̃

∂x
(xs(p), xD

s (p), p) dg xs(p)

ϕxD = (dg Φ̄(p))−1 ∂Φ̃

∂xD
(xs(p), xD

s (p), p) dg xD
s (p)

ϕxT = (dg xD
s (p))−1∂x̃T

∂p
(p)p,

(71)

and note that ϕp ∈ S(∂Φ
∂p

), ϕx ∈ S(∂Φ
∂x

), ϕxD ∈ S( ∂Φ
∂xD ), and ϕxT ∈ S(∂xT

∂p
). The matrices P ,

Q, D, and M from (52) for the network (66) are computed as follows:

P (p) = ϕp + (AD + ϕxD)ϕxT

Q(p) = A + ϕx

D(p) = AD + ϕxD

M(p) =
(
A + ϕx − (AD + ϕxD)(dg xD

s (p))−1L dg xs(p)
)
JM .

(72)

The condition P (ϕxD , ϕxT , ϕp) ∈ im M(ϕx, ϕxD , xD, x) + ker(N dg α) implies that

P (p) ∈ im M(p) + ker(N dg v̄(p)), (73)

for all p ∈ P, implying that the network (66) has global concentration invariance. Thus, by

Definition 5, the network (42) has global concentration robustness.

Necessity: Assume that the condition P (ϕxD , ϕxT , ϕp) ∈ im M(ϕx, ϕxD , xD, x) +

ker(N dg α) is not satisfied for some α ∈ ker N , x̃ ∈ R
m
+ , x̃D ∈ R

n
+ with Lx̃ + x̃D > 0,

and matrices ϕx ∈ S(∂Φ
∂x

), ϕxD ∈ S( ∂Φ
∂xD ), ϕxT ∈ S(∂xT

∂p
), and ϕp ∈ S(∂Φ

∂p
):

P (ϕxD , ϕxT , ϕp) /∈ im M(ϕx, ϕxD , x̃D, x̃) + ker(N dg α), (74)

Next, consider the network (66) with reaction rates as in (67), where Φ̃ is chosen as

Φ̃i(x, xD, p) = k̃i

m∏

j=1

x
(ϕx)ij

j

n∏

j=1

(xD)(ϕ
xD )ijp(ϕp)ij . (75)
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Choose any p̃ ∈ P and let

k̃i = αi

m∏

j=1

x̃
−aij−(ϕx)ij

j

n∏

j=1

(x̃D)−aD
ij−(ϕ

xD )ij p̃−(ϕp)ij , (76)

for i = 1, . . . , k. Furthermore, define

ϕ̄xT = dg x̃D(dg(Lx̃ + x̃D))−1ϕxT , (77)

and let

x̃T
i (p) = (Lx̃ + x̃D)ip̃

−(ϕ̄
xT )ip(ϕ̄

xT )i , (78)

for i = 1, . . . , n. Note that Φ̃ and Φ as well as x̃T and xT are structurally equivalent due to

the structural constraints on the matrices ϕx, ϕxT , ϕp, and ϕxT . With the definition of k̃i in

(76), ṽ(x̃, x̃D, p̃) = α. Then, since α ∈ ker N , and also x̃T (p̃) = Lx̃ + x̃D, the network (66)

with Φ̃, x̃T as just defined has a steady state given by

xs(p̃) = x̃

xD
s (p̃) = x̃D.

(79)

and steady state reaction rates

v̄(p̃) = α. (80)

It remains to show that (66) does not have local concentration robustness at the per-

turbation p̃. The matrices P and M defined in (52) are computed for the network (66) as

follows:

P (p̃) = ϕp + (AD + ϕxD)ϕxT

M(p̃) = (A + ϕx − (AD + ϕxD)(dg x̃D)−1L dg x̃)JM

(81)

Thus, from condition (74), we find that

P (p̃) /∈ im M(p̃) + ker(N dg v̄(p̃)), (82)

implying that the network (66) does not have local concentration robustness at p̃. Thus, by

Definition 5, the network (42) does not have global concentration robustness.

Note that the condition (70) can again be rephrased as the rank condition rank(P |I) =

rank I, where I is a matrix whose columns span the space imM + ker(N dg α).
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V. ROBUSTNESS OF THE ESCHERICHIA COLI CHEMOTAXIS PATHWAY

From the stationary equations of the reaction rates, given in Materials and Methods of

the main text, we determine the logarithmic expansion coefficients for the state variables

M and the perturbations P . In the following only nonzero coefficients are considered and

the results are summarized in Table I.

We make use of Kronecker’s delta, defined by δij = 1 for i = j and zero otherwise. If

perturbations act on individual components we arrive at

∂ ln vi

∂ ln RT
= δi1 (83)

∂ ln vi

∂ ln BT
= δi3 (84)

∂ ln vi

∂ ln Y T
= −δi3 (85)

∂ ln vi

∂ ln ZT
= δi6 (86)

∂ ln vi

∂ ln AT
= (δi3 + δi5)

∂ ln Ac

∂ ln AT
︸ ︷︷ ︸

β1

(87)

∂ ln vi

∂ ln W T
= (δi3 + δi5)

∂ ln Ac

∂ ln W T
︸ ︷︷ ︸

β2

(88)

∂ ln vi

∂ ln T
= (δi3 + δi5)

∂ ln Ac

∂ ln T
︸ ︷︷ ︸

β3

−δi1 − δi2 (89)

∂ ln vi

∂ ln[ATP ]
= (δi3 + δi5)

∂ ln kA(ATP)

∂ ln[ATP ]
︸ ︷︷ ︸

δ

(90)

∂ ln vi

∂ ln L
= (δi3 + δi5)

∂ ln P s

∂ ln L
︸ ︷︷ ︸

α2

(91)

∂ ln vi

∂ ln mRNAmocha

=
∂ ln vi

∂ ln RT
+

∂ ln vi

∂ ln BT
+

∂ ln vi

∂ ln Y T
+

∂ ln vi

∂ ln ZT
(92)

which results in the matrix shown in Fig. 2 of the main text.

The non-zero entries of M are given by

∂ ln vi

∂ ln Bp
= δi2 + δi4 (93)

∂ ln vi

∂ ln m
= (δi3 + δi5)

∂ ln P s

∂ ln m
︸ ︷︷ ︸

α1

. (94)
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TABLE I: The logarithmic expansion coefficients reflecting the matrix (A|M |P (1)|P (2)). Note

that the rate equations contain nonlinear functions kA = kA(ATP), P s = P s(m, L) and Ac =

Ac(AT , W T , T ). Lowercase Greek letters denote the logarithmic expansion coefficients that arise

from (unspecified) nonlinear dependencies. We emphasize that, though in this case the precise

functional dependencies are known, our framework does not require to specify the exact functional

form of the dependencies.

Yp m Bp L AT W T T ATP RT BT Y T ZT

v1 = kR RT /T 0 0 0 0 0 0 -1 0 1 0 0 0

v2 = kB Bp/T 0 0 1 0 0 0 -1 0 0 0 0 0

v3 = kA Ac P s KY

KB

BT

Y T
0 α1 0 α2 β1 β2 β3 δ 0 1 −1 0

v4 = γB Bp 0 0 1 0 0 0 0 0 0 0 0 0

v5 = kA Ac P s 0 α1 0 α2 β1 β2 β3 δ 0 0 0 0

v6 = kZ ZT Yp

KZ + Yp
η 0 0 0 0 0 0 0 0 0 0 1

As demonstrated in the main text, the specific topological organization, with kinetic depen-

dencies summarized in Table I, allows the output of the chemotactic pathway to be robust

against diverse perturbations that would otherwise impede the functionality of the network.

As can easily be ascertained in Table I each perturbation corresponding to the columns of

P (1) is an element of the invariant perturbation space. In contrast to this, perturbations

corresponding to the columns of P (2) are not within the invariant perturbation space, hence

the pathway is not robust against fluctuations in these components. However, the organiza-

tion of the pathway ensures that the pathway is indeed robust against concerted fluctuations

in these components. See main text for details.

We emphasize that the uncovered design principle of the chemotaxis pathway is in contrast

to the more straightforward possibility to utilize an extensive cellular machinery to ’fine-

tune’ quantities that appear as parameters in the equations, such as protein concentrations

or ATP availability. We further note that the robustness requires some logarithmic deriva-

tives to attain specific values, as encoded for example by mass-action kinetics, while other

functional dependencies may remain unspecified.
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VI. MATERIALS AND METHODS

A. Bacterial strains and plasmids

VS104 [∆(cheYcheZ)] and LL4 [∆(cheYcheZ)∆flgM] strains used in this study were de-

rived from a wild-type chemotaxis strain RP437 using pAMPts homologous recombination

system of allele exchange as described before [11]. Plasmid pVS88 encodes CheY-YFP and

CheZ-CFP fusion proteins transcribed as one bicistronic mRNA from the pTrc promoter

inducible by isopropyl β-D-thiogalactoside (IPTG) [13].

B. Growth conditions

All strains were grown under standard chemotaxis conditions [11, 13] at 34C in a rotary

shaker to mid-exponential phase (OD600 ≈ 0.48) in tryptone broth (TB) supplemented with

100µg/ml ampicillin and indicated amounts of IPTG.

C. FRET measurements

Cell preparation, FRET measurements and evaluation of FRET data were performed as

described previously [12, 14] on a custom-modified Zeiss Axiovert 200 microscope.

D. Quantification of gene expression

Expression of fluorescent reporter proteins in individual cells was quantified as described

before [5] using fluorescence imaging on an AxioImager fluorescence microscope equipped

with an ORCA AG CCD camera (Hamamatsu).

E. Note on Figure 4B

Measurements of kinase activity upon stimulation by CheZ-CFP/CheY-YFP FRET in a

CheY/CheZ deleted strain (VS104; black line) and a strain with additional deletion of the

anti-sigma factor flgM (LL4; red line), where the latter results in an approximately seven

fold upregulated transcriptional activity of the pathway proteins, including mocha, meche
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operons and chemoreceptors. As the FRET pair is expressed from plasmid, a shift in the

adapted kinase activity occurs upon upregulation of pathway proteins. This shift is correct

by employing measurements of the flagellar rotation bias in a wild type strain and a flgM

deleted strain (CheY and CheZ native), where it has been shown that in both strains the

adapted kinase activities are equal [5]. The resulting rescaled kinase activity is shown in

Fig. 4B.
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VII. FURTHER APPLICATIONS

A. Two-component systems and implications for synthetic biology

One of the merits of our approach is to guide the design of perfectly robust signaling

circuits – with important implications for synthetic biology. To exemplify the construction

of robust signalling networks, we briefly consider instances of two-component signal trans-

duction systems. Bacterial two-component systems typically consist of a membrane-bound

sensor kinase that senses a specific stimulus and a cognate response regulator that modu-

lates the signal response. The robustness of individual bacterial two-component system with

respect to concentration fluctuations was investigated previously [2, 9].

Recently, Skerker et al. [10] described a method that allows for the rational rewiring of

the specificity of two-component systems. Such rational design of the output responses of

two-component systems is a major step forward in the design of protein-based synthetic

pathways, with exciting potential applications in synthetic biology and biotechnology [4].

However, the rational design of two-component systems will also necessitate to engineer ro-

bustness of the rewired pathways with respect to possible detrimental fluctuations – taking

into account that synthetic circuits are not a product of evolution. In this respect, of par-

ticular importance are fluctuations in compound concentrations that arise from stochastic

variations in transcription and translation, as well as from other sources, such as variations

in division. In fact, it seems highly desirable to implement any altered topology such that

the expression of the individual proteins has no effect on the (rationally designed) input-

output relationship of the network. In this case, the only requirement for the method of

Skerker et al. [10] to generate perfectly robustness networks is a sufficiently high expression

of any of the involved proteins – without the need to fine-tune any of the precise expression

levels.

Our framework is able to straightforwardly account for the mechanisms of robustness of

such (networks of) two-component systems. In Fig. 1 two variants of a prototypical two-

component system are shown, each consisting only of three reactions: the autophosphory-

lation of a sensor histidine kinase (H), the transfer of the phosphoryl group to a response

regulator (R), and the subsequent dephosphorylation of R. Neglecting complex formation

(but see below for the full solution), the system is described by the two differential equations
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FIG. 1: Robustness of two-component systems. We consider three simplified reactions, autophos-

phorylation of a sensor histidine kinase (H), transfer of the phosphoryl group to a response regulator

(R), and dephosphorylation of R. (A) The prototypical two-component system. (B) A modified

topology with a bifunctional histidine kinase, such that the unphosphorylated kinase acts as a

phosphatase for the response regulator.

for the independent state variables, HP and RP ,

d

dt




HP

RP



 =




1 −1 0

0 1 −1





︸ ︷︷ ︸

N

·








ν1

ν2

ν3








(95)

and the mass conservation relationship




HT

RT



 =




1 0

0 1





︸ ︷︷ ︸

L




HP

RP



 +




H

R



 . (96)

Both topologies only differ in kinetic dependencies of the rate equations, specifically

νA =








k1 · S · H

k2 · HP · R

k3 · RP








and νB =








k1 · S · H

k2 · HP · R

k3 · RP · H








(97)

for the systems shown in Figs. 1A and 1B, respectively. The right nullspace of the scaled

stoichiometry is identical for both systems and can be represented by a matrix K that solely

consist of the 1-vector (here the column has already been normalized to remove dependencies
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on the stationary flux distribution).

We aim to test for invariance of the pathway output – the phosphorylated response regulator

(RP ) – with respect to variations in total component concentrations HT and RT . We proceed

as described in Sections II.B and II.C.

We start with the topology shown in Fig. 1A. In this case, the matrices of logarithmic partial

derivatives are given as

MD =











Hp

v1 0

v2 1

v3 0











and D =











H R

v1 1 0

v2 0 1

v3 0 0











, (98)

resulting in a matrix M defined as (see Section II.B)

M =











Hp

v1 0

v2 1

v3 0











−











H R

v1 1 0

v2 0 1

v3 0 0











·




−α

0





︸ ︷︷ ︸

L′′

=











Hp

v1 α

v2 1

v3 0











, (99)

where α = −Hp/H. The perturbation vectors with respect to the total concentrations HT

and RT are given as

PH =











HT

v1 γH

v2 0

v3 0











and PR =











RT

v1 0

v2 γR

v3 0











, (100)

with γH := ∂ ln ν1/∂ ln HT and γR := ∂ ln ν2/∂ ln RT .

The rank condition for global concentration robustness with respect to the total concentra-

tion of the histidine kinase (HT ) therefore reads

rank








γH α 1

0 1 1

0 0 1








?
= rank








α 1

1 1

0 1








. (101)

Obviously, the equation cannot be fulfilled for arbitrary values of γH and α, hence the sys-

tem shown in Fig. 1A does not exhibit global concentration robustness with respect to the
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total concentration of the histidine kinase (HT ).

The same conclusion can be reached for the total concentration of the response regula-

tor (RT ). The rank condition for global concentration robustness reads

rank








0 α 1

γR 1 1

0 0 1








?
= rank








α 1

1 1

0 1








. (102)

Again, the equation cannot be fulfilled for arbitrary values of γR and α, hence global

concentration robustness is not achieved.

A different scenario is shown in Fig. 1B. Here, a bifunctional histidine kinase implies that

the unphosphorylated kinase acts as a phosphorylase for the response regulator. Repeating

the calculations shown above, we obtain

MD =











Hp

v1 0

v2 1

v3 0











and D =











H R

v1 1 0

v2 0 1

v3 1 0











, (103)

resulting in,

M =











Hp

v1 α

v2 1

v3 α











(104)

and

PH =











HT

v1 γH

v2 0

v3 γH











and PR =











RT

v1 0

v2 γR

v3 0











, (105)

with definitions given above. We emphasize that indeed γH := ∂ ln ν1/∂ ln HT =

∂ ln ν3/∂ ln HT , with

∂ ln ν1

∂ ln HT
=

HT

ν1

∂ (k1SH)

∂HT
=

∂ ln H

∂ ln HT
and

∂ ln ν3

∂ ln HT
=

HT

ν3

∂ (k3RpH)

∂HT
=

∂ ln H

∂ ln HT
. (106)

33



Testing the rank condition for both perturbations, reveals that

rank








γH α 1

0 1 1

γH α 1








= rank








α 1

1 1

α 1








(107)

and

rank








0 α 1

γR 1 1

0 α 1








= rank








α 1

1 1

α 1








, (108)

thus both conditions are fulfilled for any non-zero values of γH , γR, and α. The system

shown in Fig. 1B indeed exhibits perfect concentration robustness of the output variable Rp

with respect to variations in both total concentrations HT and RT . We note that within

this example the bifunctionality of the histidine kinase is crucial to achieve robustness of

the pathway output – a mechanism that is functionally similar to the concerted expression

of proteins adjacent on an operon observed for the E. coli chemotaxis pathway.

Elaborating on the simple system discussed above, our framework is also straightforwardly

applicable to the full system, including explicit complex formation. We consider the three

processes

H → HP (109)

HP + R ↔ [HP R] → RP + H (110)

RP + H ↔ [RP H] → R + H . (111)

corresponding to system of 6 variables and 7 reaction rates. The system of differential

equations is given as

d

dt










HP

RP

[HP R]

[RP H]










=










1 −1 1 0 0 0 0

0 0 0 1 −1 1 0

0 1 −1 −1 0 0 0

0 0 0 0 1 −1 −1










︸ ︷︷ ︸

N

·



















k1 · H

k2 · HP · R

k3 · [HP R]

k4 · [HP R]

k5 · RP · H

k6 · [RP H]

k7 · [RP H]



















︸ ︷︷ ︸

v

, (112)
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and supplemented by the mass conservation relationship




HT

RT



 =




1 0 1 1

0 1 1 1





︸ ︷︷ ︸

L










HP

RP

[HP R]

[RP H]










+




H

R



 . (113)

Here the concentrations of unphosphorylated components, R and H, are chosen as depen-

dent variables. We note that the choice of dependent variables is not unique. Alternative

choices lead to identical results, provided that the dependent variables are chosen such that

the matrix MD is of maximal possible rank.

To test for robustness of the pathway output, we first evaluate the nullspace of the stoi-

chiometry,

KN =



















1 0 0

1 1 0

0 1 0

1 0 0

1 0 1

0 0 1

1 0 0



















→ K′ =



















1

1

1

1

1

1

1



















, (114)

where the representation has already been normalized and dependencies on the stationary

flux distribution were already removed. The logarithmic expansion coefficients for the state

variables MD are summarized in Table II. Instead of computing the expression for M =

MD−D ·L′′, we utilize a direct approach to judge output robustness of the network. Since

we are only interested in the vector space spanned by the matrices M and K′, and not in

a particular representation, we note that the expression for M is not required under the

condition rank(D|MD|K′) = rank(MD|K′). As can be verified in Table II this condition

indeed holds for the two-component system. Furthermore, the pertubations PT with respect

to total concentrations can be expressed in terms of the partial logarithmic derivatives with

respect to the dependent variables. Since rank(D|MD|K′) = rank(MD|K′), obviously

also rank(PT |M
D|K′) = rank(MD|K′). Hence the pathway exhibits perfect robustness

against variations in the total concentrations RT and HT .

This result can be generalized to a generic strategy towards perfect output robustness for

engineered protein networks. Utilizing rewiring of substrate specificity [10], in addition
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TABLE II: The logarithmic expansion coefficients with respect to the dependent and independent

state variables, D and MD, respectively, along with the nullspace K′.

D MD K′

Rp R H [HP R] [RP H] HP

v1 = k1 · H 0 0 1 0 0 0 1

v2 = k2 · HP · R 0 1 0 0 0 1 1

v3 = k3 · [HP R] 0 0 0 1 0 0 1

v4 = k4 · [HP R] 0 0 0 1 0 0 1

v5 = k5 · RP · H 1 0 1 0 0 0 1

v6 = k6 · [RP H] 0 0 0 0 1 0 1

v7 = k7 · [RP H] 0 0 0 0 1 0 1

to implement the desired functionality, the interactions should be rewired such that the

logarithmic expansion coefficients for the dependent state variables D are linearly dependent

on the logarithmic expansion coefficients for the independent state variables MD and the

largest parameter independent representation of the nullspace K′. Specifically, we require

rank(D|MD|K′) = rank(MD|K′) , (115)

to ensure global concentration robustness against all total concentrations within a signaling

network. This simple condition allows to establish whether a rewired network will exhibit

the desired functionality without the need to fine-tune expression levels. Our framework is

able to guide the necessary network extensions to guarantee robust network functionality.

B. Conservation relationships and robustness of mass-action systems

A particular application of our framework relates to global concentration robustness of

mass-action systems with respect to total conserved concentrations, as recently also dis-

cussed elsewhere [8]. Our framework allows to derive a simple principle that allows to judge

for global concentration robustness and is able to guide the necessary network extensions

to design perfectly robust networks. We consider a system as described in Eq. (7) in Sec-
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tion II B,

ẋ = N · v
(
x,xD

)
(116)

xT = L · x + xD , (117)

and aim to test for robustness of the output variables xA with respect to perturbation in

the total concentration of each molecular component xT = (xT
1 , xT

2 , ..., xT
n ). For simplicity,

we assume that all rate equations are given by generalized mass-action (GMA) kinetics,

vi(x) = ki

n∏

j=1

x
αij

j . (118)

Consequently, the partial logarithmic derivatives with respect to dependent and independent

variables, the elements of the matrices D and MD, are constant values. Under the special

condition

rank(D|MD|K′) = rank(MD|K′) , (119)

where K′ denotes a largest parameter-independent representation of the nullspace, the sys-

tem exhibits global concentration robustness with respect to perturbations in xT . The

reason is that any perturbation in total concentrations can be represented by a perturbation

in the dependent variables xD. Since D is already an element of the invariant perturbation

space, due to the condition Eq. (119), any such perturbation is necessarily also an element

of the invariant space, hence global concentration robustness with respect to total conserved

concentrations is guaranteed.

As compared to alternative methods [8], our approach has the advantages that it is (i) con-

ceptually considerably simpler, (ii) numerically straightforward to test by standard methods

of linear algebra (rank conditions), and (iii) straightforwardly guiding modification of the

matrix D to ensure perfect concentration robustness.

C. Complex perturbations and temperature compensation

One of the merits of our approach is that it is not restricted to a particular type of

perturbation, but is applicable to a wide variety of detrimental influence that potentially

impede network functionality. While our focus is mainly on variations in native expression

levels – as one of the dominant sources of variability in living cells – our framework also
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accounts for any other perturbation that can be expressed in terms of the logarithmic ex-

pansion coefficient of the rate equations.

Relevant applications include the retroactivity of signaling circuits [15] as well as detrimen-

tal pathway crosstalk [1, 6]. Both issues also relate to scenarios where signaling pathways

utilize common resources, such as ATP to provide energy. Within our framework, any such

possibly detrimental influence can be considered as a perturbation – allowing the identifi-

cation or construction of an appropriate topology that compensates for the corresponding

perturbation.

A particular intriguing example of a complex perturbation is given by variations in temper-

ature. A change in temperature usually affects all rate constants simultaneously – making

the prediction of perfectly robust topologies a difficult task [7]. In the simplest case, we

may assume that each reaction rate follows the Arrhenius equation, that is, the temperature

dependence of a reaction rate vi can be described by a multiplicative factor

ki = Ai exp

(

−
Ei

RT

)

, (120)

where Ei denotes the activation energy for the ith reaction, Ai a proportionality constant,

R the gas constant, and T the absolute temperature in Kelvin). Here, the activation energy

is a constant for each reaction that does not further dependent on the temperature or the

stationary state. In this case, we can straightforwardly construct the perturbation vector

PT with respect to changes in temperature, with elements

∂ ln vi

∂ ln T
=

∂ ln ki

∂ ln T
=

Ei

RT
. (121)

Specifically, each element of PT explicitly depends on the temperature. However, the direc-

tion of the vector PT , with

PT =
1

RT











E1

E2

...

Er











(122)

for a system consisting of r reaction rates, does only depend on the (constant) activation

energies of the reaction. Hence, using our condition for output robustness it is straightfor-

ward to judge global temperature compensation of a biochemical network.

We note that in practise a straightforward application of the Arrhenius equation is often not
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appropriate. In this case, for arbitrary dependencies ki(T ) our framework is still applicable –

just as for any other complex perturbation that acts on many reaction rates simultaneously.

D. Robustness of bi- and multistable systems

As yet, the focus of our approach has been networks that exhibit a globally stable sta-

tionary state, characterized by xs and νs, for all parameters. However, many signaling

networks exhibit bi -or multistable dynamics, giving rise to two or more stationary states.

As a particular merit, our approach is still applicable in these situations – without requiring

substantial modifications. In particular, global uniqueness of the stationary state was not a

necessary precondition to derive the requirement for global robustness, hence the condition

for global concentration robustness applies to any locally stable state that fulfills the steady

state condition.

However, our framework does rely on invertibility of the Jacobian matrix to ensure that

a gradual change of intermediate variables may not affect the set of designated output

variables. This does not hold in a situation in which the system, under the action of a

perturbation, undergoes a bifurcation that results in a non-invertible Jacobian (as, for ex-

ample, a saddle-node bifurcation). With respect to the application on multistable systems,

we therefore have to introduce the additional constraint that all perturbations must be such

that the transient response in systems variables after the perturbation remains within the

basin of attraction of the respective state. Once the perturbation is sufficiently strong to

allow the system to cross the attractor boundary, the robustness of the state is lost. How-

ever, in this case the system usually adopts another stationary state – which again exhibits

perfect concentration robustness with respect to perturbations of large magnitude. In this

sense, we are in the favorable situation that our framework allows to construct robust bi-or

multistable systems that are still capable to switch between states. Also, since we are mainly

concerned with slow perturbations with respect to the intrinsic timescales of the system, the

robustness of each stationary state is maintained even for perturbations of comparatively

large magnitude – provided the variables remain within the basin of attraction of the re-

spective state.

As a guideline for the construction of robust bi- or multistable systems, we further note

that such systems usually involve strong nonlinearities. Here, it is of considerable advantage
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FIG. 2: A bistable system based on a generic two-component architecture that exhibits perfect

concentration robustness. Shown is the stationary state of the active response regulator Rp as a

function of the signal strength S. For sufficiently large S a non-zero solution exists, in addition to

the solution Rp = 0. All stationary states, including the separatrix (grey dashed line), are invariant

with respect to changes in total conserved proteins HT and RT . Parameters are k1 = k3 = 1,

Ka = 1, n = 4, and HT = RT = 5, each given in arbitrary units (au).

to utilize a robust (“output”) variable within the feedback mechanism. In this way, the

requirement to fine-tune a highly nonlinear feedback is circumvented.

We illustrate the design of a multistable robust system using a simple example based on

a generic two-component system. We again consider the system of differential equations

discussed above

d

dt




HP

RP



 =




1 −1 0

0 1 −1





︸ ︷︷ ︸

N

·








ν1

ν2

ν3








. (123)

The vector of kinetic rate equations ν is analogous to the robust topology shown in Fig. 1B.

ν =








k1 · S · H · f(Rp)

k2 · HP · R

k3 · RP · H








. (124)

As the only modification, we assume that the active response regulator Rp is capable to

sensitize the receptor, thereby enhancing the phosphorylation of H. This modification does

not impede the robustness of the system with respect to changes in the total conserved
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protein concentrations. In particular, the derivative towards the variable Rp does not enter

the invariant perturbation space or its construction, hence the invariant perturbation space

is identical to the scenario discussed above.

Solving for the steady state of the system using the relationship ν1 = ν3 at steady state, we

obtain

Rp −
k1

k3

· S · f(Rp) = 0 . (125)

With a particular choice of f(Rp), for example,

f(Rp) =
Rp

n

Ka
n + Rp

n , (126)

and n = 4 we obtain

R5
p −

k1

k3

· S · Rp
4 + Ka

nRp = 0 , (127)

and the system indeed exhibits bistable dynamics that is independent of the total concen-

trations HT and RT . A bifurcation diagram is shown in Fig. 2.

The system allows for several conclusions: (i) Concentration robustness holds for any sta-

tionary state of the system, including unstable states. (ii) Strong nonlinearities should be

confined to robust variables. As these variables do not enter the construction of the invariant

perturbation space, the need for fine-tuning the respective parameters is circumvented. (iii)

Robustness of the system is lost at the bifurcation. In this case, the state looses stability

and adopts another state, which again exhibits non-local robustness. Hence, robustness

is restricted to perturbations within the respective basin of attraction. (iv) While these

conclusions may be obvious for the simple example discussed above, our reasoning likewise

applies to systems of large size and is amendable to an algorithmic solution.
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VIII. MISCELLANEA

A. Limitations of our approach

As the reader may have noticed, a physical network that is robust in the sense

rank(P |M |K) = rank(M |K), with rank(P |K) 6= rank(K), cannot be robust to

arbitrary large perturbation strength. The reason is the perturbation induces changes in

∆xM . As the intermediate state variables, ∆xM , are physical quantities they cannot grow

unbound or get negative. For these systems there is thus always a certain perturbation

strength that leads to an abrupt break down of robustness.

For many cases this breakdown can be made more explicit, when accounting for conservation

equations. For example the active form of a protein y1 is related to the total concentration

by yT = y + y1, with y the inactive form. Thus, we have y1 ≤ yT . As the rank condition

only uses differential forms, the latter inequality has to be additionally fulfilled.

It is further important to note that robustness as defined by the rank condition

rank(P |M |K) = rank(M |K) does not imply stability of the reaction network. In ad-

dition to the formal conditions derived in this report, global stability of a stationary state

should also be checked in order to obtain a meaningful notion of robustness. For example, it

has to be ensured that the Jacobian matrix has negative eigenvalues for all physical values

of reaction fluxes and state variables. Numerically this is most simply tested by showing

that the scaled Jacobian matrix N [diag vs](M |A) has negative eigenvalues for all positive

vs and all physical values of the unknown entries of (M |A).

B. Fine-tuned global robustness

For some reaction networks it might not be clear beforehand if the parameter dependent

logarithmic derivatives – denoted by Greek symbols – are indeed independent. In this case

there could exist a functional dependence between some of the non-constant elements in the

matrix (P |M |K) that increases the invariant subspace. An example is given by the following
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(rather artificial) system that includes a specific perturbation parameter, 0 < p < 1,

ẋ = −k∗ ln(p)
︸ ︷︷ ︸

v1

− k∗x
︸︷︷︸

v2

(128)

ẏ = k1 exp(−x)
︸ ︷︷ ︸

v3

− k2y p
︸ ︷︷ ︸

v4

(129)

In the stationary state we can substitute xs = − ln(p) into the second equation get ys =

k1/k2. Thus the systems output is obviously independent of p. Although this systems shows

global robustness against p, the reaction network involves fine tuning, in the sense that two

independent reactions share the same rate constant, k∗. Using our formalism in a straight

forward manner, we arrive, after introducing the independent functions α and β, at

rank













P X K1 K2

v1 β 0 1 0

v2 0 1 1 0

v3 0 α 0 1

v4 1 0 0 1













6=rank













X K1 K2

v1 0 1 0

v2 1 1 0

v3 α 0 1

v4 0 0 1













(130)

However, as α := xs, β := [ln p]−1 and xs = − ln p, we see that α = β−1. After multiplication

of the P -column with β−1 we see that the rank condition is indeed fulfilled. This fine tuned

global robustness can be numerically detected by inserting the actual values for the Greek

symbols for one stationary state of the system. If robustness with respect to P differs in this

case to randomly chosen Greek symbols, then there exists a hidden dependency among the

parameter dependent logarithmic derivatives. This example shows that global robustness of

reaction network can also emerge from a combination of fine-tuning and network structure.

Here the hyperplane spanned by the column vectors of (M |K) is rotating in space and the

perturbation, P , is such that it constantly follows the rotation of this hyperplane for all p.

In general, our assumption of independence between the partial derivatives represents a

worst-case scenario and is sufficient for global robustness.

C. Numerical test of the rank condition

In practice, a simple numerical test for the rank condition Eq. (6) can be performed

by treating the independently varying logarithmic derivatives as random variables. In the

case of the example in Section II B this can be realized by redefining the Greek symbols as
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random variables that take values according to a uniform distribution U(−1, 1). In doing

so, it has to be guaranteed that each randomly chosen value must be sufficiently different

from zero and sufficiently different from all other random values. The minimum differences

between the random values are set by the numerical precision and avoid that by chance

almost equal values are assigned to linear independent logarithmic derivatives.

D. Determination of the parameter-independent nullspace K′

So far, the nullspace K – determined by N ·diag(vs) ·K = 0 – depends on the particular

flux distribution vs. To identify the parameter-free conditions for structural robustness, it

is desirable to identify the subspace of K that is independent of the particular state vs.

To this end, we first construct the nullspace K from the nullspace of the original stoichio-

metric matrix, N · KN = 0, using the transformation

K = [diag vs]−1 · KN · q (131)

where q denotes an invertible (k − m) × (k − m) matrix, corresponding to a basis transfor-

mation of the non-unique representation of the nullspace.

At this point it may be argued that the flux dependency of K can be partially removed by

using elementary matrix operations. However, it is far to restrictive to treat the stationary

fluxes vs = (vs
1, ..., v

s
k) as unknowns as the fluxes are not linear independent

vs = KN · α , (132)

with α the elementary flux coefficients and dim α = dim vs − rank(N ) = k − m. We

therefore utilize the freedom of constructing the matrix q in order to generate the largest

possible subspace K(1) that is independent of reaction fluxes. We first rewrite Eq. (131) as

Knm =

∑

j KN
nj qjm

∑

j KN
nj αj

. (133)

The parameter independent subspace of K defines K(1) and requires that the elements of

K(1) are independent of α. This implies the condition

∂αs
K(1)

nm = 0 = ∂αs

∑

j KN
nj qjm

∑

j KN
nj αj

=

∑

j KN
nj (∂αs

qjm)
∑

j KN
nj αj

−

∑

j KN
nj qjm

(
∑

j KN
nj αj)2

KN
is (134)
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for all indices s, which can be rewritten to give

∑

j

KN
nj ∂αs

qjm =

∑

j KN
nj qjm

∑

j KN
nj αj

︸ ︷︷ ︸

const

KN
ns (135)

that in turn takes – by defining KN
j as the j-th column of KN – the alternative form

∑

j

KN
j ∂αs

qjm ∝ KN
s (136)

The latter statement requires qjm ∝ αj for all m and thus at least one column vector of q

exists, given by q∗ = α, that results in a parameter free representation of K. By Eq. (133)

we obtain the first parameter free nullspace vector, K
(1)
n1 =

∑

j KN
nj αj/

∑

j KN
nj αj = 1 for all

rows, n. A k-dimensional vector consisting only of ones is thus always part of the invariant

subspace and reflects an obvious invariance property of all stationary networks: multiplica-

tion of all fluxes in the network by the same factor does not change any stationary state

variable of the network.

As this invariance property can hold also locally, we can separate q∗ in the

maximum number of orthogonal column vectors q∗

1 = (α1, ..., αl1 , 0, ..., 0)T , q∗

2 =

(0, ..., 0, α(l1+1), ..., αl2 , 0, ..., 0)T , ..., q∗

z = (0, ..., 0, αlz−1+1, ..., αk−m)T such that Eq.(136)

holds. The independent columns {q∗

1, ..., q
∗

z} can be determined by a block matrix rep-

resentation of KN which is obtained by resorting columns and rows such that the resulting

matrix has only zero entries to all sides of each block. Note that the blocks are in general

not square. This resorting leads to

K(1) =








1
(KN ·α)1

0
. . .

0 1
(KN ·α)k







·








KN
1 0

. . .

0 KN
z








︸ ︷︷ ︸

KN

·








q∗

1 0
. . .

0 q∗

z








︸ ︷︷ ︸

q∗

(137)

=








1
(KN ·α)1

0
. . .

0 1
(KN ·α)k







·








KN
1 · q∗

1 0
. . .

0 KN
z · q∗

z








. (138)
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Thus the column vectors of the matrix K(1) that indicate robustness to a fold change in

several fluxes can be constructed by the surprisingly simple transformation

KN =








KN
1 0

. . .

0 KN
z








→








1 0
. . .

0 1








= K(1) (139)

where the 1’s denote a vector of ones with dimension set to number of rows of the corre-

sponding block. K(1). Next we complete K(1) and identify the complementary nullspace,

K(2), to K(1) such that both spaces together span the complete nullspace of N · diag(vs),

K = (K(1)|K(2)).

We illustrate the construction of K(1) and K(2) by an example of a reaction network which

gives rise to two alternative stationary flux distributions. The example consists of two

pathways
v1
→ A

v2
→ B

v3
→ C

v4
→

and
v1
→ A

v5
→ D

v6
→ C

v4
→

The stoichiometric matrix and its corresponding nullspace are given by

N =










1 −1 0 0 −1 0

0 1 −1 0 0 0

0 0 1 −1 0 1

0 0 0 0 1 −1










, KN =
















1 1

1 0

1 0

1 1

0 1

0 1
















. (140)

showing explicitly the two above mentioned flux distributions. The nullspace K(1) consists of

one column vector K(1) = (1 1 1 1 1 1)T as obviously KN can be grouped only in one single

block. As K = [diag(vs)]−1 · KN the i-th row of KN is weighted by (vs
i )

−1 = (KN · α)−1
i .

As the αi can vary independently under perturbations, the identity vs
i = vs

j holds if the i-th

and j-th row of KN are identical. Identical rows of KN thus weight the the rows of K the

same inverse flux, whereas all other rows of K carry different weights. As the dimension

of the joint vector space spanned by K(1) and K(2) must have the same dimension as K –

which by construction has the the dimension of KN – we can choose only one column of KN
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to construct K(2) in this example. Taking the second column and indicating the unknown

inverse fluxes by Greek symbols we obtain

K =
















1 β1

1 0

1 0

1 β1

1 β2

1 β2
















. (141)

with β1 = (vs
1)

−1 = (vs
4)

−1, and β2 = (vs
5)

−1 = (vs
6)

−1. If we multiply the first column of

K by β2 and subtract the second column we obtain β2K1 − K2 = (β′

1 β2 β2 β′

1 0 0)T with

β′

1 = β2 − β1. This result would have been obtained by taking the first column of KN to

construct K(2). We note that K(2) is in general not part of the invariant subspace, due to

its dependence on the (local) flux distribution. This dependence is obvious in the example

above, where the two column vectors of K span a two dimensional hyperplane and one

vector cause the hyperplane to rotate in six dimensional space under a change in stationary

flux distributions. The method introduced so far allows to construct in a systematic way

the nullspace K such that the dependence on stationary fluxes – that is the number of

unknowns βi – is reduced to a minimum. The subspace spanned by the columns K can be

further reduced by elementary matrix operations (EMO)

K =
















1 β1

1 0

1 0

1 β1

1 β2

1 β2
















EMO
−→
















1 1

1 0

1 0

1 1

1 δ

1 δ
















(142)

with δ = β2/β1.
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