
Text S1

Reagents. UDP-glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine
(UDP-GlcNAc), uridine diphosphate (UDP) and fluorescin (FDG) were purchased from
Sigma-Aldrich (St. Louis, MO).
Strains and plasmids. Mutagenesis and selection were performed in yeast strain
CY10560 (PFUS1-HIS3 ade2∆3447 ade8∆3457 can1-100 far1∆1442 his3∆200 leu2-3, 112
lys2 sst2∆1056 ste14 :: trp1 :: LY S2 ste18γ6-3841 ste3∆1156 trp1-1 ura3-52). β-
galactosidase assays were performed using yeast strain CY10981 (PFUS1-HIS3 can1-
100 far1∆1442 his3∆200 leu2-3, 112 lys2 sst2∆2 ste14 :: trp1 :: LY S2 ste3∆1156 trp1-1
ura3-52) carrying plasmid Cp1021 (PFUS1-LacZ 2µm URA3). The UDP-glucose receptor
and 2211, H-20 and K-3 mutants were cloned as previously described.1

Hessian matrix as a measure of sensitivity to model parameters. Differentiating
log-likelihood (Eq. (8) in the main text) twice with respect to model parameters yields:
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where {γ} = ({α}, µ). The second term can be omitted in the low-noise limit (I l
k({α}, µ)−

Ĩ l
k ∼ σ̃k → 0), yielding a standard expression for the Hessian matrix2 (Eq. (9) in the main

text). Explicitly,
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Hessian analysis of a mixture of two ligands interacting with a single receptor.

For a single receptor and two ligands we obtain from Eq. (2) (omitting the receptor index
and setting α1 = α, σ̃2 = 1 for convenience):
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Alternative definitions of the relative concentrations. Recall that the relative concentra-
tions are defined as αm = nm+1/n1 (m = 1 . . .Nlig − 1), where nj is the concentration
of ligand j = 1 . . . Nlig. Different choices of the ligand in the denominator may lead
to very different numerical values of α if, for example, n1 ≪ n2 in a two-ligand, one-
receptor system. Nevertheless, the uncertainty of both predictions is related. Indeed, if
α = n2/n1 → 0 one can show that
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where el
i = exp{−β(∆Gi − µl)}, i = 1, 2. Thus the absence of ligand 2 can generally be

predicted with finite uncertainty, at least if the total chemical potential µ is known. In
the α → +∞ limit,
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and σ2
α = − (∂2L/∂α2)

−1
diverges as α4. This is expected because α → +∞ is equivalent

to α′ = n1/n2 = 1/α → 0, yielding σ2
α = α4σ2

α′ . Thus σ2
α′ remains finite as ligand 1

disappears from the mixture. Moreover, the expression for ∂2L/∂α′2 in the α′ → 0 limit
should be the same as the expression for ∂2L/∂α2 in the α → 0 limit, but with ligand
labels 1 and 2 interchanged. Indeed, if 1 ↔ 2 Eq. (5) becomes the same as Eq. (4), apart
from the 1/α4 factor mentioned above.
Agonist-agonist scenario. If both ligands have unit efficacies (A1 = A2 = 1), Eq. (3) gives
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Let us assume for simplicity that µ is known, so that σ2
α = − (∂2L/∂α2)

−1
. Further-

more, let us suppose that ∆G1 is fixed at a finite value, while ∆G2 varies from −∞ to
+∞. It is then easy to see that ∆G2 = ∆G1 is a special case, yielding pl

2 = αpl
1 (∀l)

and thus σ2
α = ∞. So, as expected, discrimination between the two ligands is impossi-

ble if they have equal efficacies and binding affinities. If ∆G2 → −∞, Z l → +∞ (and
pl

2 → 1, ∀l), making ∂2L/∂α2 = 0 for finite α. Thus discrimination is impossible if one of
the ligands completely saturates the receptor. However, if ∆G2 → +∞, Z l remains finite
(while pl
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Surprisingly, discrimination is still possible in this limit, even if ligand 2 does not bind
the receptor (Fig. S9). This is because the total concentration is known in this example
and so the information provided by ligand 1 is sufficient to infer α. Of course, if ligand
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1 is either unbound (pl
1 → 0, ∀l) or strongly bound (Z l → +∞), predicting α becomes

impossible again.
If α is known, the error in the predicted total chemical potential µ is determined by

(Eq. (3)):
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Learning the value of the total concentration becomes impossible if both ligands are
unbound (Z l → 1), or if one ligand is bound so strongly that measuring the concentration
of the other ligand becomes problematic (Z l → ∞). Note that in both of these limits
∂2L/∂α2 = 0 as well.

Simultaneous discrimination of µ and α is not possible if both ligands have equal
efficacies (Fig. S9). Indeed, the determinant of the 2 × 2 matrix of second derivatives is
always close to 0:

det

(

∂2L

∂γi∂γj

)

=

(

β

α(1 + α)

)2 N
∑

l,l′=1

Z l′ − 1

Z l2Z l′3
(pl

2 − αpl
1) × (9)

[

(pl
2 − αpl

1)(p
l′

1 + pl′

2 ) − (pl′

2 − αpl′

1 )(pl
1 + pl

2)
]

.

This is because appreciable values of pl
1 or pl

2 lead to Z l > 1, which in turn suppresses the
determinant. The small value of the determinant means that at least one of the errors is
large. For example, if ∆G2 = ∆G1,
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is infinite because pl
2 = αpl

1(∀l), whereas Z l and thus ∂2L/∂µ2 are finite. In general,
the multidimensional analysis of this type is difficult because zeros in the numerator and
denominator of Eq. (10) and a similar equation for σ2

µ have to be handled correctly.
Agonist-antagonist and antagonist-agonist scenarios. If one of the ligands (e.g. ligand 2)
acts as a perfect antagonist (A1 = 1, A2 = 0), Eq. (3) gives (Fig. S8):
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With ligand 1 acting as an antagonist (A1 = 0, A2 = 1), we obtain (Fig. S7):
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If α = 1 Eq. (12) is the same as Eq. (11) with ∆G1 and ∆G2 interchanged. However,
for arbitrary α there is no symmetry, so that maximizing the determinant of the Hessian
with A1 = 0, A2 = 1 and A1 = 1, A2 = 0 yields two distinct solutions in the {∆G1, ∆G2}
space.
Number of agonist-antagonist patterns in an arbitrary receptor array. For an
arbitrary receptor-ligand combination, there are
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unique patterns in which each receptor interacts with one agonist and one antagonist
(the patterns are unique in a sense that all patterns connected by trivial receptor label
permutations are counted only once). Here Nrec is the number of receptors, Nlig is the
number of ligands, and n = 2

(

Nlig

2

)

is the number of ways in which one agonist and one
antagonist can be bound by a single receptor, so that the total number of patterns (some
connected by receptor label permutations) is nNrec . With Nrec = 2 and Nlig = 3 the total
number of patterns is 36, and 21 unique patterns include 3 combinations in which one
of the ligands acts as an antagonist for both receptors, 3 more where one of the ligands
is the global agonist, 6 mixed patterns where one ligand invokes the agonist-antagonist
receptor response and the other two are either an agonist or an antagonist for one of the
remaining receptors, and finally 9 patterns in which one of the receptors does not strongly
interact with any of the ligands. The remaining 15 patterns are related to the ones listed
above through receptor label permutations. The first subclass yields equivalent globally
optimal solutions, subclasses 2 and 3 correspond to local maxima, and the fourth subclass
in which one of the receptors remains unused does not yield any stable solutions, relaxing
into one of the other categories.
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