Text S3. Relationship between $E I$ and $S I$

In the main text we defined two measures of information integration across a partition that we called $E I$ [Eq. (4)] and $S I$ [Eq. (3)] which we repeat here:

$$
\begin{align*}
& S I\left(X_{0} \rightarrow X_{t} \mid P\right)=I\left(X_{0}: X_{t}\right)-\sum_{i=1}^{k} I\left(P_{0}^{(i)}: P_{t}^{(i)}\right), \tag{S6}\\
& E I\left(X_{0} \rightarrow X_{t} \mid P\right)=\sum_{i=1}^{k} H\left(P_{0}^{(i)} \mid P_{t}^{(i)}\right)-H\left(X_{0} \mid X_{t}\right) \tag{S7}
\end{align*}
$$

In this section, we derive the relationship between these two measures. We begin with arbitrary probability distributions $\operatorname{Pr}\left(X_{0}=x_{0}\right)$ and $\operatorname{Pr}\left(X_{t}=x_{t}\right)$, and first calculate $I\left(X_{0}: X_{t}\right)$ defined as

$$
\begin{equation*}
I\left(X_{0}: X_{t}\right)=H\left(X_{0}\right)-H\left(X_{0} \mid X_{t}\right) \tag{S8}
\end{equation*}
$$

where

$$
\begin{equation*}
H\left(X_{0}\right)=-\sum_{x_{0}} p\left(x_{0}\right) \log p\left(x_{0}\right) \tag{S9}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(X_{0} \mid X_{t}\right)=-\sum_{x_{0}, x_{t}} p\left(x_{0}, x_{t}\right) \log p\left(x_{0} \mid x_{t}\right) \tag{S10}
\end{equation*}
$$

where $p\left(x_{0} \mid x_{t}\right)=p\left(x_{0}, x_{t}\right) / p\left(x_{t}\right)$ is the conditional probability to have observed state x_{0} given that we observed state $x_{t} t$ time steps later. Of course, Eqs. (S8) and Eq. (2) of the main text are equivalent on account of (S9) and (S10). The relationship (S8) also holds for each of the i parts of a partition:

$$
\begin{equation*}
I\left(P_{0}^{(i)}: P_{t}^{(i)}\right)=H\left(P_{0}^{(i)}\right)-H\left(P_{0}^{(i)} \mid P_{t}^{(i)}\right) . \tag{S11}
\end{equation*}
$$

If we insert (S8) and (S11) into (S6) we obtain

$$
\begin{align*}
S I\left(X_{0} \rightarrow X_{t} \mid P\right) & =H\left(X_{0}\right)-H\left(X_{0} \mid X_{t}\right)-\sum_{i=1}^{k}\left[H\left(P_{0}^{(i)}\right)-H\left(P_{0}^{(i)} \mid P_{t}^{(i)}\right)\right] \tag{S12}\\
& =-H\left(X_{0} \mid X_{t}\right)+\sum_{i=1}^{k} H\left(P_{0}^{(i)} \mid P_{t}^{(i)}\right)+H\left(X_{0}\right)-\sum_{i=1}^{k} H\left(P_{0}^{(i)}\right) . \tag{S13}
\end{align*}
$$

Together, the first two terms in Eq. (S13) are EI in Eq. (S7). The last two terms together are the negative of the (positive) integration $\mathcal{I}_{\mathcal{P}}\left(X_{0}\right)$ across partitions

$$
\begin{equation*}
\mathcal{I}_{\mathcal{P}}\left(X_{0}\right)=\sum_{i=1}^{k} H\left(P_{0}^{(i)}\right)-H\left(X_{0}\right) . \tag{S14}
\end{equation*}
$$

This integration across partitions is a generalization of the quantity introduced in Eq. (13), but at step $t=0$: Thus:

$$
\begin{equation*}
S I\left(X_{0} \rightarrow X_{t} \mid P\right)=E I\left(X_{0} \rightarrow X_{t} \mid P\right)-\mathcal{I}_{\mathcal{P}}\left(X_{0}\right) . \tag{S15}
\end{equation*}
$$

For a maximum entropy distribution $\operatorname{Pr}^{\max }\left(X_{0}\right)$ (all states appear with equal probability), all possible partitions must also be uniformly distributed as there can be no correlations between them. Thus, for $\operatorname{Pr}^{\max }\left(X_{0}\right)$ (but only for this distribution)

$$
\begin{equation*}
\operatorname{Pr}^{\max }\left(X_{0}\right)=\prod_{i=1}^{k} \operatorname{Pr}^{\max }\left(P_{0}^{(i)}\right) \tag{S16}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
H^{\max }\left(X_{0}\right)=\sum_{i=1}^{k} H^{\max }\left(P_{0}^{(i)}\right) \tag{S17}
\end{equation*}
$$

In that case, the integration (S14) vanishes, and $E I$ equals $S I$. The same observation was made by Barrett and Seth in equations (25) and (26) of Ref. [42].

