
1

Text S1: Supporting Information

1 Eye and Head Plant Models

The oculomotor and head motor systems can be modeled by linear pole-only plants. Previous studies
have used 2- or 3-pole linear plants for the eye and 2-pole plants for the head [1–3]. Here, we consider a
3-pole plant for the eye, since the initial simulations of our control architecture showed that at least three
poles are necessary to reproduce biologically-plausible velocity profiles in the head-restrained condition.
Therefore, the impulse responses of the plants have the following general form:

he(t) = ge(k1e
− t

T1 + k2e
− t

T2 + k3e
− t

T3), (1)

hh(t) = gh(k4e
− t

T4 + k5e
− t

T5), (2)

where Tx are the pole time constants, and ge and gh represent the DC gain values of the eye and head
plants, respectively. For the head-restrained condition, since we are comparing our results to human
experimental data, we set T1 = 224ms, T2 = 13ms, and T3 = 4ms as in a human eye plant model [4].
The head plant does not have any role in this condition. For the head-free condition, since we compare
our results to monkey data, we set the parameters according to monkey eye and head plant models [4,5].
These values are T1 = 260ms, T2 = 12ms, T3 = 1ms, T4 = 9844ms, and T5 = 156ms. The DC gain
values are ge = 0.217 and gh = 1.719.

The coefficients k1, k2, ... k5 can be calculated in terms of the pole time constants T1, T2, ... T5 as:

k1 =
T1

T 2
1 + T2T3 − T3T1 − T1T2

,

k2 =
T2

T 2
2 + T3T1 − T1T2 − T2T3

,

k3 =
T3

T 2
3 + T1T2 − T2T3 − T3T1

,

for the eye plant and:

k4 =
1

T4 − T5
,

k5 =
1

T5 − T4
,

for the head plant model. Therefore, each plant is parameterized by one DC gain and time constants of
its poles.

The plant responses, re(t) and rh(t), can be retrieved as:

re(t) =

∫ t

0

ue(τ)he(t− τ)dτ + re(0)(l1e
−t
T1 + l2e

−t
T2 + l3e

−t
T3), (3)

rh(t) =

∫ t

0

uh(τ)hh(t− τ)dτ, (4)

where re(0) is the initial eye position, and the initial head position is assumed to be zero. Other initial

2

conditions are ṙe(0) = r̈e(0) = 0 and ṙh(0) = 0 . The coefficients l1, l2, and l3 are defined as:

l1 =
T 2
1

T 2
1 + T2T3 − T3T1 − T1T2

,

l2 =
T 2
2

T 2
2 + T3T1 − T1T2 − T2T3

,

l3 =
T 2
3

T 2
3 + T1T2 − T2T3 − T3T1

,

2 Gradient Descent Optimization

We use a gradient descent optimization method for minimizing the cost function. To this end, we start
with calculating the partial derivative of the cost function with respect to each eye weight parameter:

∂E

∂we
ij

=

∫ T

0

∂

∂we
ij

|rg(t)|dt+ αe
∂

∂we
ij

N∑
j=1

M∑
i=1

(we
ij)

4

= −
∫ T

0

∂|rg(t)|
∂re(t)

∂re(t)

∂we
ij

dt+ 4αe(w
e
ij)

3

= −
∫ T

0

sgn(rg(t))
∂re(t)

∂we
ij

dt+ 4αe(w
e
ij)

3, (5)

where the signum function, sgn(x), is defined as:

sgn(x) =

 −1 if x < 0;
0 if x = 0;

+1 if x > 0.

Using Equation 4 in the paper we can calculate the partial derivative of re(t) with respect to we
ij :

∂re(t)

∂we
ij

=
∂

∂we
ij

∫ t

0

ue(τ)he(t− τ)dτ

=

∫ t

0

∂ue(τ)

∂we
ij

he(t− τ)dτ,

and since

∂ue(t)

∂we
ij

=
∂

∂we
ij

N∑
j=1

M∑
i=1

we
ijsij(t)

= sij(t),

we obtain:
∂re(t)

∂we
ij

=

∫ t

0

sij(τ)he(t− τ)dτ. (6)

By substituting (6) into (5), the final form of the error function gradient is obtained:

∂E

∂we
ij

=−
∫ T

0

sgn(rg(t))

(∫ t

0

sij(τ)he(t− τ)dτ

)
dt+ 4αe(w

e
ij)

3. (7)

3

Similarly, we can obtain the gradient with respect to the head weight parameters:

∂E

∂wh
ij

=−
∫ T

0

sgn(rg(t))

(∫ t

0

sij(τ)hh(t− τ)dτ

)
dt+ 4αh(w

h
ij)

3. (8)

The weight adaptation rules are defined according to the gradient descent method as:

we
ij ← we

ij − δeij
∂E

∂we
ij

, (9)

wh
ij ← wh

ij − δhij
∂E

∂wh
ij

, (10)

where δeij and δhij represent adaptation rates for the eye and head controller weights, respectively. These
are adapted themselves as described in the next section.

3 Adaptive Learning Rate Method

For fast convergence with the gradient descent approach, we use an adaptive learning rate. The method
we use is quite similar to the RPROP algorithm [6] with a slight modification: instead of using the sign of
the error for updating the weights, we directly use the error value. This method provides a local adaptive
learning scheme where the learning rate is adapted according to changes in the sign of the gradient. If
the gradient has the same sign in two successive iterations, the learning rate of the corresponding weight
parameter increases by a factor η+; otherwise, it decreases by another factor η−. This adaptation scheme
can be formalized as:

δk+1
ij =


η+δkij if ∂E

∂wij

k · ∂E
∂wij

k+1
> 0,

η−δkij if ∂E
∂wij

k · ∂E
∂wij

k+1
< 0,

δkij if ∂E
∂wij

k · ∂E
∂wij

k+1
= 0,

where k + 1 represents the current and k represents the previous iteration number of the adaptation
procedure. We set η+ = 1.01 and η− = 0.95 in our simulations.

4 Implementation

In order to choose the free parameters of our model (αe and αh), we use a genetic algorithm (GA) with
a population of 20 chromosomes, each one containing specific values of the free parameters. A fitness
value is defined for each chromosome as the sum of squared errors (SSE) at specific points between the
simulated behavior when the chromosome’s free parameter values are used, and experimentally observed
data. The GA mutation process adds a random number taken from a zero-mean Gaussian distribution to
each parameter value of a parent chromosome in order to create a child chromosome. This distribution
shrinks by time, such that at each generation m its standard deviation is obtained as:

σm = σm−1(1−
mS

N
)

where N is the total number of generations and S controls how the standard deviation shrinks as the
algorithm proceeds. We set N = 48 and S = 0.15 in our simulations. For each set of parameter values,
the fitness value is calculated after the learning procedure (Equations 9 and 10) converges.

We used the C++ programming language to run the simulations, and MATLAB for illustration and
statistical analysis. The simulations were carried out using a parallel computing implementation, such

4

that the chromosomes of a current generation of GA were simulated simultaneously. Furthermore, various
instances of each chromosome pertaining to different gaze shift amplitudes were simulated in parallel.
For more information about the genetic algorithm procedure used in this study, we refer the interested
reader to [7].

References

1. Keller EL (1973) Accommodative vergence in the alert monkey. Motor unit analysis. Vision Res 13:
1565-1575.

2. Bizzi E, Dev P, Morasso P, Polit A (1978) Effect of load disturbances during centrally initiated
movements. J Neurophysiol 41: 542-556.

3. Kalesnykas RP, Sparks DL (1996) The primate superior colliculus and the control of saccadic eye
movements. Neuroscientist 2: 284-292.

4. Shadmehr R, Orban de Xivry JJ, Xu-Wilson M, Shih TY (2010) Temporal discounting of reward
and the cost of time in motor control. J Neurosci 30: 10507-10516.

5. Freedman EG (2001) Interactions between eye and head control signals can account for movement
kinematics. Biol Cybern 84: 453-462.

6. Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: The
RPROP algorithm. In: IEEE International Conference on Neural Networks (ICNN). pp. 586-591.

7. Dorsey RE, Mayer WJ (1995) Genetic algorithms for estimation problems with multiple optima,
nondifferentiability, and other irregular featues. J Bus Econ Stat 13: 53-66.

