
 
 

Consider the experimental design with an F2 population consisting of N individuals, each of 
which is measured for phenotype.  A set of nS diploid individuals from the low end of the 
distribution and a set of nS individuals from the high end are collected.  DNA is combined in 
equal amounts from individuals within each bulk, followed by sequencing at average coverage C 
per SNP.  For each SNP, the data is four allele counts that can be summarized in a 2 x 2 table 
(Table 1 of main paper).  The observed allele frequency in the Low bulk is p1 = n3 / (n1 + n3). 
The observed allele frequency in the High bulk is p2 = n4 / (n2 + n4). With this notation, the G-
statistic for a snp is: 
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with ni* as the ‘expected value’ for count i.  The null hypothesis is that there is no QTL close to 
our SNP.  This implies the standard “expected counts” for a 2 x 2 contingency table, e.g. n1* = 
(n1 + n2) (n1 + n3)/ (n1+n2+n3+ n4).   
 
For the analytical calculations below, we approximate G with a second order polynomial 
expansion of equation (1) around the expected values for n1, n2, n3, and n4.  Assuming equal 
(average) sequencing coverage of each bulk and the null hypothesis is correct, E[n1] = E[n2] = q 
C and E[n3] = E[n4] = (1-q) C.  The second order Taylor expansion is: 
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If we further assume no segregation distortion (q=0.5), then E[n1] = E[n2] = E[n3] = E[n4] = C/2 
and 
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In contrast to the usual G-test (SOKAL and ROHLF 2000, ch 17), we do not expect that G will 
generally follow a chi-square distribution (1 d.f.) in the present situation.  The counts in table 1 
are determined by two distinct rounds of sampling.  The first sample is the 2 nS chromosome 
sets that constitute each bulk (assuming diploid inheritance).  Second, there is random variation 
in the number of reads per allele within each bulk due to the stochastic nature of next-
generation sequencing.  The two rounds of sampling inflate the mean and variance of G relative 
the chi-square with 1 d.f. even when the null hypothesis is true (there is no QTL).  Given the 
magnitude of the QTL effect, the size of the F2 population (N), and the number selected from 

each tail (nS), there is an expected frequency for the low allele (A0) in each bulk (denoted θL 

and θH, respectively).  If there is no segregation distortion and A1 increases phenotype then we 

expect θH < 0.5 < θL.  If the QTL contributes additively to other sources of variation in phenotype, 

then θL and θH are simple functions of allelic effect and nS/N (see KIMURA and CROW 1978).   
 

The actual frequency of A0 in each bulk (qL* and qH*) differ from θL and θH due to sampling 

(each bulk contains 2 nS alleles).  We assume that this sampling is binomial.  The actual 
estimated frequencies (qL and qH) differ from qL* and qH* because of random variation in read 



number.  We assume that the read numbers for each bin of Table 1 are conditionally Poisson 
distributed: 
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Under the null hypothesis: θL and θH = q.  To calculate the expected value for G, we need the 
expected values of counts: 
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and the expected values for squares and cross products:   
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Substituting into equation (2a) and then simplifying, we find that  
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The expectation does not depend on q. 
 
To calculate the variance, we need 3rd and 4th order moments of the counts.  Symmetry implies 
that we can use the moments involving n1 and n3 to deduce moments involving n2 and n4.  After 
substantial algebra, we find that: 
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which can be written as 
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With no segregation distortion (q = 0.5), the equation for the variance simplifies: 
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These equations predict convergence on chi-square-1 when nS >> C >> 1.  Then E[G] → 1 and 

Var[G] → 2.   
 

An alternative and perhaps more intuitive way to obtain ][GVar is to note that variance in G has 

two sources.  There is sampling of the individuals in each bulk and read number variation.   
Using the standard rule for calculating the variance of a conditional random variable: 
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**

HL qqGE  is obtained by the steps used above to derive E[G] except without averaging 

over the distributions of realized allele frequencies within bulks (qL* and qH*).  The relevant 
expression is: 
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This reduces to 
2****

)(21],[ HLHL qqCqqGE −+≈  if q = 0.5.  The variance (across replicated 

experiments) for this average is  
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Binomial sampling of chromosomes to obtain bulks implies: 
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This reduces to 
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The conditional partitioning is useful mainly to calculate the covariance of G at distinct sites.  

Let ],[ BA GGCov denote the covariance of G values for at two linked sites A and B, which should 

be positive for closely linked SNPs.  Without recombination, neighboring SNPs will share the 
same values for qL* and qH*.  To consider recombination, let x1, x2, x3, and x4 denote the 
haplotype frequencies of AB, Ab, aB, and ab for two linked snps in the low bulk.  y1, y2, y3, and 
y4 are the corresponding haplotype frequencies in the high bulk.  The covariance of G values 



from snps A and B can be usefully partitioned by conditioning on observed haplotype 
frequencies: 
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This partitioning is useful because ],,[ yxGGCov BA should be zero.  As long as counts at sites 

A and B are determined by distinct (and independently sampled) sequence reads, then 

],[ BA GGCov depends on only the sampling of individuals into bulks.  Assuming (importantly) 

that q is the same for both snps, 
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Under the null hypothesis, the moments for haplotype frequencies can be calculated from the 
multinomial distribution.  The expected values depend on the nature of segregation distortion, 
but a sensible scheme is:  
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Noting that observed haplotype frequencies in the low bulk are independent of the frequencies 
in the high bulk, and using the moments for x and y up to fourth order, and performing a 
substantial algebraic simplification, we find that  
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Substituting these into eq (11), we find that 
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This reduces to  
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if q = 0.5. 
 
 
 
Calculation of G’—Averaging G values across neighboring SNPs is sensible because the real 
signal—divergence in allele frequency between bulks—is conserved between closely linked 
sites but random noise due to variable sequencing read coverage is not.  We suggest a 
weighted average test statistic for each SNP: 
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with  
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where Dj is standardized to have value 0 at the focal position and value 1 at the edge of the 

window. Sw is the sum of 
33

)1( jD− for all snps in W. 

 
For all derivations below, we assume q = 0.5.  The null expectation of G’ is given by equation 
(3).  The variance of G’ depends on the variance of individual G values (equation 5) and the 
covariance between SNPs (equation 13) within a window: 
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where i indexes all SNPs other than j contained within the window.   
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