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1. Introduction

We previously considered a simple stochastic model for cell polarization in
which one chemical species of particles diffuses back and forth between cytosol and
membrane of a fixed cell [1]. The model, which contained a number of reaction rate
constants, made no assumptions on the precise mechanistic nature of the reactions
involved in the membrane-cytosol transitions. There, feedback was scaled to main-
tain a constant fraction of the particles on the membrane as the total number of
particles N in the cell varied. We gave an analysis of the behaviour of the system
for all possible values of these parameters. In particular we gave an explanation
for the polarization which occurs for certain parameter values when N is large.
An in-depth mathematical analysis confirming the parameter ranges suggested by
numerical simulations in [1] was subsequently provided by Gupta [3].

In the present paper we modify the model from [1], removing the constraint
that held the fraction of signaling molecules on the membrane constant. Here all
reactions strictly obey mass-action kinetics and, as a consequence, the fraction of
membrane-bound particles varies freely as N changes. This alters the behavior of
the model: we observe a sharp transition from an “off” state with no molecules on
the membrane to a polarized “on” state.
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2 SUPPLEMENT: POLARIZATION IN THE SIMPLE FEEDBACK MODEL

Below, we analyze how this transition from unpolarized to polarized states is
affected by the total number N of particles in the cell, and its volume V . Our main
conclusion is that for polarization to occur, the particle density N/V in the cell
must exceed a certain minimal particle density x∗c (to be computed below), while
the total number of particles N in the cell should lie below a threshold Nmax which
depends on the reaction rates as well the size of the cell and the rate at which
particles on the membrane diffuse (also to be computed below). This allows us
to compute a region in the parameter space, where polarization is guaranteed to
occur, (main paper, Figure 4C).

In order to understand how the system behavior changes as the total particle
number N and cell volume V vary, we recall below relevant arguments from [1] that
explain how it comes about that the stochastic system can exhibit polarization while
the continuum model does not. We next present for our new model arguments that
mark the boundaries of the region in parameter space where polarization occurs.

2. The model

The model introduced in the main paper concerns a cell in which molecules
move stochastically between cytosol and membrane with the following transition
rates:

• Any cytosolic particle can spontaneously move to the membrane with rate
KonVon/V .

• Any membrane-bound particle can move to the cytosol with rate Koff .

• Any membrane-bound particle can recruit any cytosolic particle with rate
KfbVfb/V .

Here V is the volume of the cytosol, Von is the volume of the region near the
membrane within which spontaneous recruitment to the membrane is possible, and
Vfb is the volume of the region surrounding a membrane bound particle within which
it can recruit a cytosolic particle to the membrane (see the main paper, figure 1B).

In this supplement we will find it convenient to use the constants Coff , Con, Cfb,
which are related to Koff ,Kon, and Kfb by

(1) Coff = Koff , Con = Kon
Von

V
, Cfb = Kfb

Vfb

V
.

In terms of these parameters the stochastic behavior of the model is defined as
follows: if there are N particles in the cell, and if nc of these are in the cytosol,
then during a short time interval of length ∆t an on-, off-, or feedback-event occurs
with probability

Connc∆t, Coff(N − nc)∆t, or Cfbnc(N − nc)∆t, respectively.

At the same time the membrane-bound particles undergo Brownian motion with
Diffusion rate D.

3. Dependence of the Parameters on Cell Size and Total Particle
Number

For any fixed choice of parameters Kon,Koff ,Kfb, N,D, V, Von, Voff , our present
model is the same as the model we considered in [1], where we used the following
rate constants:

kon = Con, kfb = NCfb, and koff = Coff .
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The difference with [1] lies in how the reaction rates change with the size of the cell
and the total number of molecules it contains. In [1] the constants kon, koff , kfb were
kept constant, while here, following mass-action kinetics, the constantsKon,Koff ,Kfb

are fixed.
It follows from (1) that the constants Con, Coff , Cfb also do not change with N ,

but they do depend on the size of the cell. If one considers cells of varying volumes
V , then the spontaneous recruitment volume Von must also vary. Under the most
natural hypothesis Von should be proportional to the area of the cell membrane,
and assuming the cells are spherical, the “on-volume” Von should therefore vary
proportionally to V 2/3.

All rates Con, Coff , Cfb, kon, koff , kfb,Kon,Koff , and Kfb have units [time]−1.

4. Switching in the Stochastic Model

In the stochastic model the total number nc(t) of particles on the membrane
evolves by a continuous time Markov process, whose master equation describes the
time evolution of the probability distribution of n(t). We derive the stationary
distribution for the number of particles nc(t) in the cytosol (as in [1]), and analyze
how it changes when N decreases from N > n∗c to N < n∗c , where n∗c is the critical
particle number

(2) n∗c =
Coff

Cfb
=
Koff

Kfb

V

Vfb
.

The stationary distribution is the time independent solution to the master
equation governing the nc(t) process. If {pn : 0 ≤ n ≤ N} is the stationary
distribution, then pn is the average amount of time the cytosol population of a
particular cell will be nc(t) = n, i.e. the average amount of time the cell will have
exactly n particles in its cytosol.

4.1. The case Con = 0. If Con = 0 then the stationary distribution is con-
centrated at nc = N . Indeed, if all particles are in the cytosol, and if Con = 0, then
there is no way particles can move to the membrane. In the long run the system
will always end up in this state, and once in the state nc(t) = N the system must
remain at nc(t) = N . Therefore, over a sufficiently long time interval, the fraction
of time the system spends in the state nc(t) = N approaches 1. This, by definition,
implies that the stationary distribution is given by

(3) pn = 0 for n = 0, 1, . . . , N − 1, and pN = 1.

4.2. The general formula for pn when Con > 0. The stochastic variable
nc(t) evolves by discrete jumps of ±1, and one can always find explicit expressions
for the stationary distributions of such systems (e.g. see [5, Ch.VI] or [4, §6.11]).

The rates at which the jumps occur are

(n− 1)→ n : Coff(N − n+ 1)

n→ (n− 1) : Cfb(N − n)n+ Conn

If we write pn(t) = Pr[nc(t) = n], then the master equation can be written as

(4)
dpn
dt

= Wn+1 −Wn,
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n n+1n-1 Wn+1Wn

{Cfb(N-n)n+Conn}pn

Coff (N-n+1)pn-1

Figure 1. The random walk for the number of particles nc(t) in the cytosol. Wn is
the net rate at which probability flows from state n to state n− 1. In equilibrium this
rate vanishes (see §4.2).

for n = 1, 2, . . . , N − 1, and

dp0

dt
= +W1,

dpN
dt

= −WN .

Here

Wn = [Cfb(N − n)n+ Conn] pn − Coff(N − n+ 1)pn−1

is the rate at which probability flows from the state nc(t) = n to the state nc(t) =
n − 1 (see figure 1). For the stationary distribution one has Wn+1 = Wn for all
n = 1, 2, . . . , N − 1 and also W1 = WN = 0. This implies Wn = 0 for all n, and
thus

(5)
(N − n)pn

(N − n+ 1)pn−1
=

1

n

Coff

Cfb + Con

N−n
=

1

n

n∗c

1 + Con/Cfb

N−n

=
n∗c
n

(
1 +

γ

N − n
)−1

,

in which

(6) γ =
Con

Cfb
=
KonVon

KfbVfb
,

is the non-dimensionalized on-rate, and n∗c is given by (2). From here one finds for
n = 0, 1, 2, 3, · · · , N − 1 that

pn
p0

=
N

N − n
(n∗c)

n

n!

n−1∏
k=1

(
1 +

γ

N − k
)−1

.

To get pN we use that WN = 0 implies

(7)
pN
pN−1

=
Coff

ConN
=

n∗c
Nγ

,

which leads to

pN
p0

=
N

γ

(n∗c)
N

N !

N−2∏
k=1

(
1 +

γ

N − k
)−1

.

4.3. Approximation for Con � Cfb. If we now assume that Con is much
smaller than Cfb, so that γ � 1, then we find the following approximation for the
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logarithm of the product which appears in our expressions for pn/p0,

ln

n−1∏
k=1

{
1 +

γ

N − k

}−1

= −
n−1∑
k=1

ln
{

1 +
γ

N − k

}
= −

n−1∑
k=1

{ γ

N − k
+O

( γ2

(N − k)2

)}
= −

{n−1∑
k=1

γ

N − k

}
+O(γ2)

= −γ ln
N

N − n
+O(γ).

Thus

(8)

n−1∏
k=1

{
1 +

γ

N − k

}−1

=
( N

N − n

)−γ
eO(γ).

Here O(γ) is a quantity which is bounded by Cγ, where C is a constant which does
not depend on N,n, n∗c . Applying this to our explicit expressions for pn/p0 we get

(9)
pn
p0

=
(n∗c)

n

n!

( N

N − n

)1−γ
eO(γ) for n = 0, 1, 2, . . . , N − 1

and

(10)
pN
p0

=
1

γ

(n∗c)
N

N !
N1−γeO(γ).

The ratios (9) and (10), combined with the requirement that the probabilities pn
must add up to 1, completely determine the pn.

4.4. The case n∗c < N ; bimodality for small γ. The first factor (n∗c)
n/n! in

(9) corresponds to an unnormalized Poisson distribution with parameter n∗c . As a
function of n, the quantity (n∗c)

n/n! reaches its maximum at n = n∗c , and, compared
to this maximum it is negligible when |n − n∗c | �

√
n∗c . Thus, if we ignore pN as

given by (10), then we find that the stationary distribution is concentrated near
the equilibrium value n∗c predicted by the deterministic model. When γ is large it
follows from (9) and (10) that one can indeed ignore pN , but when γ is small one
cannot. Indeed, in the extreme case where γ = 0, (10) requires pN = 1 and pi = 0
for all i = 0, 1, . . . , N − 1. This is consistent with the description of the stochastic
model for Con = 0 given above in §4.1.

When γ is very small, but still positive, the state nc(t) = N is not absorbing.
However, if the system ever ends up in this state, it can only leave this state through
an on-event. The rate at which these occur is Connc(t) = ConN = γCfbN , and thus
the average time the system will spend in the state nc(t) = N is (CfbNγ)−1 ∼ γ−1.
This time can be very long when γ is small.

We can now describe the general dynamic behavior of the system. Most of the
time the system is either in the state nc(t) = N (membrane empty), or in the state
where it fluctuates at nc(t) = n∗c +O(

√
n∗c). The time it takes the system to leave

the empty-membrane state nc(t) = N , is proportional to γ−1. When the system
leaves this state it evolves back to the stable equilibrium region nc(t) ≈ n∗c with
high probability. Subsequently nc(t) will fluctuate around n∗c until a sufficiently
large fluctuation drives nc(t) back to the empty membrane value nc(t) = N .
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The recurrent back and forth cycling of the system between the two states
nc(t) = N and nc(t) ≈ n∗c is reflected in the possible bimodal profile of the sta-
tionary distribution (main paper, figure 3D, inset). Depending on γ, the stationary
distribution will have one peak at n = N and another Gaussian-shaped peak near
n = n∗c with width ∼

√
n∗c . The relative heights of these two peaks is indicative of

the average time it takes the system to leave either of the corresponding states.
This bimodal profile of the stationary distribution only appears when the pa-

rameter γ lies in a critical range. When γ is too small the membrane-empty state
is so close to being perfectly absorbing that the stationary distribution will only
have a peak at n = N . If, on the other hand, γ is too large then only the peak at
n ≈ n∗c will dominate.

The range of γ at which bimodality occurs will depend on N . In order to
determine this range, we compute the ratio

pN : (p0 + · · ·+ pN−1),

and see where the two probabilities are comparable.
To compute the sum p0 + · · · + pN−1 we note that when N > n∗c the Poisson

distribution (n∗c)
n/n! reaches its maximum in the interval 0 ≤ n < N , and one

therefore has
N−1∑
n=0

(n∗c)
n

n!
= en

∗
c −

∑
n≥N

(n∗c)
n

n!
= (1 + o(1))en

∗
c .

Here o(1) is a quantity which tends to zero as N → ∞, assuming that the ratio
N/n∗c stays larger than 1 (this will certainly be the case if, as in this paper, n∗c
stays fixed, and N →∞; however it also holds in the scaling of [1] where the ratio
N/n∗c was kept fixed at some value 1/heq). Applying this to (9) we get

p0 + · · ·+ pN−1

p0
= en

∗
c

( N

N − n∗c

)1−γ
eO(γ)(1 + o(1)).

Dividing this into (10) we get

(11)
pN

p0 + · · ·+ pN−1
=

1

γ

(n∗c)
Ne−n

∗
c

N !
(N − n∗c)1−γ(1 + o(1) +O(γ)

)
.

Hence pN ≈ p0 + · · ·+ pN−1 will hold if

(12) γ(N − n∗c)γ ≈
(n∗c)

Ne−n
∗
c

N !
(N − n∗c).

If n∗c is fixed, then the Right Hand Side decreases faster than exponentially as
N → ∞ (due to the N !). Even if one allows n∗c to vary with N with n∗c ≤ θN for
some constant θ < 1, one still has

(n∗c)
Ne−n

∗
c

N !
(N − n∗c) ≈

(θN)Ne−θN

N !
(N − n∗c)

≤ (θN)Ne−θN√
2πNNNe−N

N

≈
(
θe1−θ)N√N/2π,

by Stirling’s formula. Since θe1−θ < 1 for all θ < 1 the RHS in (12) decreases
exponentially with N . Solving (12) for γ we find that (N − n∗c)γ ≈ 1 + γ ln(N −
n∗c) can be omitted, while the factor

√
N is also negligible on a logarithmic scale
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compared to the exponential factor (θe1−θ)N . We therefore find that the stationary
distribution will be bimodal, in the sense that it has two peaks of equal probability,
when

(13) γ ≈ γbm
def
=
(
θe1−θ)N+o(N)

, θ =
n∗c
N
.

If N is fixed then it follows from (11) that changing γ by a factor of 10 will result in
a tenfold change in the ratio between the probabilities contained in the two peaks.
Bimodality will therefore mostly be visible in the range

1

10
γbm < γ < 10γbm

This range, in which bimodality occurs, varies strongly with N . E.g. if n∗c is at most
N/2, then θ ≤ 0.5 and θe1−θ ≈ 0.824 . . . . Every increase of N by 20 decreases γbm

by a factor (θe1−θ)20 ≈ 0.02 ≈ 1
50 . If n∗c ≤ 1

10N , so that θ ≤ 0.1, then θe1−θ ≈ 0.246

and every increase of N by five particles decreases γbm by a factor 0.0009 ≈ 10−3.

4.5. The case N < n∗c . When N < n∗c , it follows from (5) that

pn
pn−1

=
1 + 1

N−n
1 + γ

N−n
· n
∗
c

n
for all n < N.

If γ < 1 then we see that pn
pn−1

>
n∗
c

N > 1. We also found in (7) that

pN =
n∗c
Nγ

pN−1 > pN−1.

Hence the probabilities pn in the stationary distribution are strictly increasing in
n = 0, 1, 2, · · · , N . They increase exponentially and the last probability, pN , is a
factor O(γ−1) larger than the one before last, pN−1.

It follows that for k > 0 one has

pN−k ≤ γ
(N
n∗c

)k
pN

and hence

p0 + · · ·+ pN−1 ≤ γ
n∗c

n∗c −N
pN .

Therefore in the stationary distribution the probability that the cytosol population
is maximal, i.e. nc(t) = N is 1 − O(γ). Moreover, in the case that there actually
are particles on the membrane (which happens with probability only O(γ)), the
conditional expectation of the number of particles on the membrane is

E
[
N − nc(t) | nc(t) < N

]
≤ 1

1− N
n∗
c

=
n∗c

n∗c −N
.

For instance, when N < 1
2n
∗
c , this expected number of particles is two: in this

case the probability that there are particles on the membrane is very small, namely
O(γ), and even when there are particles on the membrane the expected number of
particles is two.
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4.6. Summary. Both the ODE model in the main paper and the analysis of
the stochastic counterpart above show that, when Con is much smaller than the
other two rate constants Coff and Cfb, the total number of particles in the cytosol
will settle to an equilibrium given by either n∗c or N , depending on which is smaller.
Thus, as N increases, a transition occurs at N = n∗c : for N < n∗c all particles will
remain in the cytosol (and no polarization can occur), while for N > n∗c a fixed
number (n∗c with fluctuations of order

√
n∗c) of particles remains in the cytosol with

all other particles moving to the membrane.
The critical density

(14) x∗c =
n∗c
V

=
Koff

KfbVfb

only depends on the mass-action constants Koff ,Kfb, Vfb and, in particular, does
not depend of N or V .

5. The mechanism behind stochastic polarization

5.1. Clans and polarization. We have seen that polarization will not occur
whenN < n∗c , simply because no or almost no particles are on the membrane for this
range of N . From here on we assume that N > n∗c , and we recall how polarization,
when it occurs, can be explained by considering the genealogy of particles as they
move back and forth between membrane and cytosol in between “on-events.”

Divide the membrane into a number of regions, and, at time t = 0 split the
population of membrane-bound particles into “clans,” assigning one clan to each
region. Thus at time t = 0 the particles which happen to be in the same region form
a clan, and different regions host different clans. Thereafter, for t > 0, each particle
that moves to the membrane through an on-event starts an entirely new clan of its
own, while a particle that is recruited to the membrane receives the clan identity
of the recruiting particle (its “parent”). When a particle leaves the membrane it
loses its clan identity. As the membrane-bound particles diffuse on the membrane,
they wander away from the original region that contained their ancestors.

In between on-events no new clans are ever formed while existing clans grow
and shrink in population. Since the total membrane population remains more or
less constant at the expected value N − n∗c (with standard deviation O(

√
n∗c)), the

clans are competing with each other for the membrane-bound particles. The rate at
which any given clan will gain or lose a particle is proportional to its size, namely,
if a clan has m particles, then the probability that it will recruit a new particle
during a time interval of length ∆t is

Cfb ×m× nc(t)×∆t,

while the probability that it will lose a particle is

Coff ×m×∆t.

Since the individuals in all clans have the same “death/reproduction probabilities,”
all clans are equally fit and the relative ratios of the clan sizes will undergo a neutral
drift during which clans occasionally die out. In the end only one clan will survive.

To see how polarization comes about consider the locations of the particles
in the sole surviving clan. While particles were cycling back and forth between
membrane and cytosol, particles on the membrane were diffusing and some will
have moved away from the region in which they originally found themselves. If, by
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the time only one clan has survived, one can guarantee that its clan members will
not have diffused far away from the clan’s original region, then all membrane bound
particles will be located near one of the small regions, and thus the membrane-
bound particles will form a localized cluster on the membrane.

For polarization to occur two conditions must therefore be met. First, the
frequency of on-events must be so low that there is enough time before their con-
tribution to the membrane-bound particle population becomes significant to allow
all clans but one to become extinct with high probability. Second, the diffusion
rate of membrane-bound particles must be so low that, while the number of clans is
being reduced to one, the average distance particles diffuse away from their original
ancestor is small compared to the radius of the cell.

In these arguments we analyze the distribution of membrane bound particles
assuming no on-events occur. Let us now consider the effect of on-events. At each
on-event a new clan is created. The population of this new clan is 1, while the total
population of all the already present clans is roughly N −n∗c ≈ N for large N . The
prospects for survival of the new clan are small, and its most likely fate is a rapid
extinction. In this case we may ignore the brief appearance of this small new clan
in our analysis of the distribution of the original particles and their descendants
on the membrane. To conclude that polarization will occur we therefore can relax
our assumption that no on-events occur to the assumption that the descendants
of particles which arrive on the membrane through on-events never make up more
than a small percentage of the total membrane population.

5.2. The range of N for which polarization will occur. Here we estimate
the time between on-events, how long it takes for almost all clans to become extinct,
and how far particles can diffuse in that time. If there are n∗c particles in the cytosol,
then on-events occur at a rate of Conn

∗
c per second, and thus the expectation of the

time between on-events is of the order

(15) Ton =
(
n∗cCon

)−1
=

Cfb

ConCoff
=

KfbVfb

KonKoffVon
.

This time Ton does not depend on N . Its only dependence on the size of the cell
is through Von. If we assume that the cell is spherical, then Von is proportional to
the surface area of the membrane, so that Von ∼ V 2/3 and Ton ∼ V −2/3.

Looking beyond the first on-event one can keep track of all particles which
arrived through an on-event and their descendants, and one can then estimate how
long it will take before these particles make up more than a certain fraction α of
the total membrane population. In §8 we find that for small α (e.g. α ≤ 10%) the
expected time is

(16) Tα = α(N − n∗c)Ton.

We now consider the particles which originally were on the membrane and
their descendants. If at any moment one divides the membrane-bound particles into
clans, and only considers the descendants of these original clans, then, by definition,
the number of clans cannot increase. We will argue in §7 that the expected time
within which the number of surviving original clans is halved is given by

(17) Thalf =
N − n∗c
Coff

ln 2.
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t=0 t=T7

Figure 2. Left: We divide the sphere into 128 triangles. Middle: at t = 0 the
particles inhabiting one of the triangles form a clan. This way, a clan is associated to
each triangle on the sphere. Only one of the 128 clans is shown. Right: at time T7 the
only remaining particles on the membrane all belong to the same clan. By definition,
these clan particles trace their ancestry to one of the 128 triangles. At time T7 they
will still be close to this ancestral triangle, provided the membrane diffusion rate D is
not too large.

Thus if one starts with 2k clans, then the expected time at which only one clan is
left (assuming no on-events occur) is

Tk = k · Thalf = k
N − n∗c
Coff

ln 2 =
N − n∗c
Coff

ln 2k.

Within this time interval the expected distance by which the particles in the only
surviving clan will have moved is1

d = 2
√
DTk.

If the original 2k clans were obtained by dividing the membrane into 2k pieces of
equal size, then the remaining clan at time Tk will be within a neighborhood of size
d surrounding the region containing its original ancestors.

We now choose a specific subdivision of the membrane into small regions by
subdividing it into many small triangles. One can construct such a triangulation of
the membrane by beginning with a coarse triangulation (e.g. if the membrane is a
sphere, project an octahedron onto the sphere) and then repeatedly splitting each
triangle into four smaller triangles by cutting each edge in two, and connecting the
midpoints. If the original coarse triangulation had eight triangles, then repeating
this procedure m times leads to a triangulation of the membrane into 8 × 4m =
22m+3 equal triangles. The area of each triangle is Am = 2−2m−3A, where A
is the area of the membrane (A = 4πR2 if the membrane is a sphere of radius
R). Assuming that the triangles are equilateral the radii rm of their circumscribed

circles satisfy Am = 3
4

√
3r2
m, and therefore the radius rm is given by

(18) rm =

√
2−2m−3A

3
4

√
3

= 2−m

√
2π

3
√

3
R.

1This expression for the distance travelled takes into account that the diffusion is occurring
on a two dimensional membrane. If the particles were diffusing in a three dimensional region

rather than on a two dimensional membrane then we would have d =
√

2νDTk with ν = 3.
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If the membrane is spherical, then the radius of the upper hemisphere (measured
along the surface) on the membrane is π

2R.

We choose m = 2, so that we have divided the membrane into 27 = 128
triangles. The ratio between the radius of one of these triangles and the radius of
a hemisphere is

r2

πR/2
=

1
4

√
2π/3

√
3 R

πR/2
=

1√
6π
√

3
≈ 0.175 . . . .

Since we start with 27 clans, the expected time until only one of these survives is

T7 = 7 ln 2× N − n∗c
Coff

.

this leads us to the first of two sufficient conditions which together guarantee that
polarization will occur. Namely, the descendants of particles which came to the
membrane in an on-event cannot make up more than a small fraction α of the total
membrane population at any time t < T7. Thus we are led to the requirement
T7 � Tα, i.e.

α(N − n∗c)
Cfb

ConCoff
� 7 ln 2× N − n∗c

Coff
,

i.e.

(19)
Con

Cfb
� α

7 ln 2
(≈ 0.02 if α = 0.1).

We note that this condition does not depend on the total particle number N . Note,
however that it does depend on V indirectly, as

Con

Cfb
=
KonVon

KfbVfb
.

If, as before, we assume that Vfb is independent of V and Von ≈ V 2/3, then (19)
becomes

V �
(
αKfbVfb

7 ln 2Kon

)3/2

.

The second of the two sufficient conditions imposes a limitation on the diffusion
rate. In the time T7 it takes for all but one clan to die out, clan members will have
wandered a distance

d = 2
√
DT7 = 2

√
7 ln 2

√
D(N − n∗c)/Coff

from their ancestral triangle. If we assume that d ≤ r2, then the particles of the
surviving clan will be located in a region of radius 2 × r2 ≈ 0.35 × π

2R, i.e. about
one third of the radius of a hemisphere: in this case the cell is polarized.

This second condition for polarization is therefore met if

d ≤ r2 ⇐⇒ 2
√

7 ln 2
√
D(N − n∗c)/Coff ≤ 1

4

√
2π/3

√
3R,

which is equivalent to

N − n∗c ≤
π

24
√

3× 28 ln 2

CoffR
2

D
≈ 0.039× CoffR

2

D
.
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In terms of the volume V = 4
3πR

3 of the cell this restriction is

(20) N ≤ Npol
def
=

0.039

(4π/3)2/3
× CoffV

2/3

D
+ n∗c ≈ 0.015× Koff

D
V 2/3 +

Koff

KfbVfb
V.

Note that Npol is always greater than the critical number needed for polarity n∗c .
Thus if Con/Cfb � 0.02 and N ≤ Npol both hold, then polarization will occur. If
the second of these conditions is not met, so that N � Npol, then before on-events
have claimed more than 10% of the membrane population, a single surviving clan
will appear, but within the time it takes this clan to emerge its member particles
will have spread out over the entire cell membrane.

6. The continuum limit

If there are many particles on the membrane then one can try to model their
distribution on the membrane in terms of a continuous particle density u(x, t) de-
pending on space and time. Combined with this assumption, the model then leads
to a reaction diffusion equation for u. Here we derive this equation. The arguments
in [1] show that polarization in this continuum model, if it occurs at all, only occurs
for suitable initial data, and then is only short lived.

Below we derive differential equations for quantities which, strictly speaking,
are integer valued. In doing this we adopt the usual interpretation of these differen-
tial equations. Namely, when the number of particles is large we assume that any
random variable (integer valued or not) is given by a continuous real valued function
of time plus a small noise term. The main, continuous, term is deterministic and
satisfies a differential equation, while all the stochasticity of the model is contained
in the small “noise term.” The assumption that the noise term can be ignored, as
well as the related assumption that the particle distribution on the membrane is
described by a continuous density are not always valid. The arguments about clans
tell us the parameter range in which the continuum approximation fails.

6.1. Derivation of the Reaction Diffusion Equation. Consider a small
piece A of the membrane, and let |A| and |M | denote the areas of this piece A and
of the entire membrane.

We let u(x, t) denote the density at time t of membrane bound particles. Thus
the number of particles in the region A of the membrane is

nA(t) =

∫
A

u(x, t)dx.

The rate at which the number of particles in A changes due to the reactions is

dnA
dt

= Connc
|A|
|M |

+ CfbncnA − CoffnA.

Dividing by |A| and letting the region A shrink to a point on the membrane gives
us the reaction terms governing the evolution of the density u

du

dt
=
Con

|M |
nc + Cfbncu− Coffu.

Adding diffusion gives us the Reaction Diffusion Equation for u

(21)
∂u

∂t
= 1

2D∆u+
Con

|M |
nc + Cfbncu− Coffu.
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The particle density must satisfy

nc(t) +

∫
M

u(x, t)dx = N.

Together with (21) this implies an ODE for the number of particles in the cytosol,
namely

(22)
dnc
dt

= −
∫
M

udx = −Connc − Cfb(N − nc)nc + Coff(N − nc).

6.2. The vanishing of spatial patterns. The equation (21) satisfied by the
membrane particle density u(x, t) is linear in u, and, consequently, diffusion will
erase any spatial variations in this density. To make a more precise statement
consider the average density ū(t) given by

ū(t) =
1

|M |

∫
M

u(x, t) dx,

and the mean square deviation from the average defined by

(23) σ(t)2 =
1

|M |

∫
M

(
u(x, t)− ū(t)

ū(t)

)2

dx.

If σ(t)2 = 0 then the density u(x, t) must everywhere be equal to its average, and
thus be spatially constant; if σ(t)2 is small, then the density u will be close to
its spatial average , and thus it will be nearly constant. Thus the relevance of the
quantity σ(t)2 is that it measures the size of any spatial features the particle density
u(x, t) may have.

Theorem. The mean square deviation σ(t)2 decays exponentially. If λ1 is the
first eigenvalue of the Laplace operator ∆ of the membrane, then one has

(24) σ(t)2 ≤ e−λ1Dtσ(0)2.

The rate of decay only depends on the membrane diffusion coefficient D and the ge-
ometry of the membrane (through λ1), but not on the other coefficients Coff , Con, Cfb.

The theorem implies that whatever spatial features the particle density u(x, t)
may have will be smoothed out over time and will not return.

Proof of the Theorem. The arguments are the same as in [1, Supplement].
Starting from (21) one first derives an equation satisfied by

v(x, t) =
u(x, t)− ū(t)

ū(t)
,

namely,

∂v

∂t
= 1

2D∆v − Connc(t)

|M |ū(t)
v.
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Then one computes

d

dt

∫
M

v2dx =

∫
M

2vvtdx

=

∫
M

{
vD∆v − 2

Connc(t)

|M |ū(t)
v2
}
dx

≤ D
∫
M

v∆vdx

= −D
∫
M

|∇v|2dx

Since
∫
M
vdx = 0 one can apply Poincaré’s inequality,∫

M

v2dx ≤ 1

λ1

∫
M

|∇v|2dx,

with result
d

dt

∫
M

v2dx ≤ −D
∫
M

|∇v|2dx ≤ −λ1D

∫
M

v2dx.

In view of σ(t)2 = |M |−1
∫
v2dx, this implies that

dσ2

dt
≤ −λ1Dσ

2,

and hence eλ1Dtσ(t)2 is nonincreasing. QED.

7. Derivation of (17) and competing federations of clans

Assuming that our system is between on-events we imagine the membrane
particle population to be divided into clans, and we estimate the time it takes for
all clans but one to have died out. As described in §5 we first group the clans
together into two “federations” of clans, and denote the sizes of these federations
by nj(t), j = 1, 2. We compute the expectation of the time at which one of the two
federations has died out, i.e. at which none of the clans in one of the federations
survives. At that time all membrane bound particles belong to the other federation,
and thus the number of surviving clans is (at most) half the original number of clans.
Repetition of the argument leads to the expected time at which the number of clans
has decreased by a factor 2k.

The federation sizes nj(t) evolve by

(25)
dnj
dt

= Cfb(N − n1 − n2)nj − Coffnj , (j = 1, 2)

at the ODE level. More precisely, the nj(t) evolve by a stochastic process whose
generator is

(26) L = Cfb(N − n1 − n2)
{
n1D

+
1 + n2D

+
2

}
+ Coff

{
n1D

−
1 + n2D

−
2

}
.

Here the operators D±j are defined by[
D±1 f

]
(n1, n2) = f(n1 ± 1, n2)− f(n1, n2),[

D±2 f
]
(n1, n2) = f(n1, n2 ± 1)− f(n1, n2).
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To analyze the (n1, n2) process when N is large it is convenient to renormalize and
introduce

x1 =
n1

N
, x1 =

n2

N
.

In terms of the xj the operators D±j can be expanded in a Taylor series,

(27) D±j f = ± 1

1!N

∂f

∂xj
+

1

2!N2

∂2f

∂x2
j

+O(N−3).

Using these expansions and discarding the higher order terms we can approximate
the generator L by

L =
(
NCfb(1− x1 − x2)− Coff

){
x1∂1 + x2∂2

}
(28)

+
1

2N

(
NCfb(1− x1 − x2) + Coff

){
x1∂

2
1 + x2∂

2
2

}
The first order terms indicate that the (renormalized) clan sizes xi evolve by a
stochastic version of the ODE system

(29) ẋi =
(
NCfb(1− x1 − x2)− Coff

)
xi (i = 1, 2),

while the second order terms in (28) describe the stochastic fluctuations.
Under the system (29) the sum of the total membrane population, x1 + x2

converges rapidly to the equilibrium value

x1 + x2 → x∗ = 1− Coff

NCfb
= 1− n∗c

N
,

which is consistent with our earlier observation that nc(t) converges to Coff/Cfb.
Once the total membrane population x1(t) + x2(t) of the system has reached

the equilibrium value, the deterministic model predicts that the xi will no longer
change. However, as we shall discuss in more detail below, in the stochastic model
the relative magnitude of x1 and x2 will change due to diffusion. To analyze this
drift we introduce new coordinates r, s related to xi by

r = x1 + x2, s =
x1

x1 + x2
.

The chain rule implies that

∂1 = ∂r +
1− s
r

∂s, ∂2 = ∂r −
s

r
∂s,

and hence

x1∂1 + x2∂2 = r
∂

∂r

x1∂
2
1 + x2∂

2
2 = r

(
∂

∂r

)2

+
s(1− s)

r

(
∂

∂s

)2

.

In the r, s coordinates the generator L is therefore

L =
(
NCfb(1− r)− Coff

)
r
∂

∂r
(30)

+
1

2N

(
NCfb(1− r) + Coff

){
r

(
∂

∂r

)2

+
s(1− s)

r

(
∂

∂s

)2
}
.
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x1

x2

K

drift

11− n∗c/N

r
=

1

s
=
co
ns
t

Figure 3. The (x1, x2) phase plane. On a short time scale (x1, x2) converges to the
line x1 + x2 = 1 − n∗c/N ; thereafter the point undergoes a slower neutral drift along
this line until it reaches either the x1 or the x2 axis.

We can regroup these terms as follows

L =
1

N
A(r)

(
∂

∂r

)2

+B(r)
∂

∂r
+ C(r, s)

(
∂

∂s

)2

where

A(r) =
r

2

{
NCfb(1− r) + Coff

}
B(r) =

{
NCfb(1− r)− Coff

}
r

C(r, s) =
NCfb(1− r) + Coff

2Nr
s(1− s)

Since the coefficients A(r) and B(r) are of comparable magnitude, the expression
(30) for the generator L of the (r, s) process shows that the dominant term is the
first order term (NCfb(1 − r) − Coffr)r∂r, while the other terms are smaller by a
factor 1/N . Thus on a short time scale (r, s) will evolve principally by the first
order part

L ≈
(
NCfb(1− r)− Coff

)
r
∂

∂r
.

This differential operator is a vector field. Thus on a short time scale the quantities
(r, s) evolve by the deterministic system of ordinary differential equations

dr

dt
= (NCfb(1− r)− Coffr)r,

ds

dt
= 0.

Figure 3 shows the flow of this system. Under this system, the fraction s of the
membrane population belonging to clan 1 remains constant, while r converges to
the equilibrium value

r = 1− n∗c
N

+ o(N−1).
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Once this equilibrium has been achieved, the other terms in the generator become
relevant, and, on a longer time scale of order t ∼ N , the ratio s will undergo a drift
until it either hits 0 or 1. The time it takes for this to happen is the exit time. If
we write Texit(x) for the expectation of the exit time (or “mean exit time”), given
that our process started at x = (x1, x2), then Texit(x) is the solution of an elliptic
boundary value problem [4, 5, 6]

(31) L[Texit] + 1 = 0, on the region K = {(x1, x2) : xi > 0, x1 + x2 < 1},

with boundary condition Texit = 0 on the exit set

Kexit = {(x1, x2) ∈ ∂K : x1 = 0 or x2 = 0}.

When the process starts from arbitrary (r, s) values the r component always quickly
converges to the equilibrium value 1 − n∗c/N . One can think of the exit time as
the sum of the time it takes for r to converge to the equilibrium value 1 − n∗c/N
and the time it takes the drift along the line r = 1 − n∗c/N to reach either s = 0
or s = 1. the first part of this evolution is only of O(1), and hence negligible with
respect to the total exit time. Thus we may assume, in first approximation, that
the exit time only depends on s, i.e.

Texit(x) = φ(s)

and that r = 1− n∗c/N . This leads to an ODE for φ(s),

Coff

N − n∗c
s(1− s)φ′′(s) + 1 = 0, φ(0) = φ(1) = 0

whose unique solution is given by

φ(s) =
N − n∗c
Coff

{
−s ln s− (1− s) ln(1− s)

}
.

We believe this to be an accurate approximation of the true solution to (31); in any
case one can show that 2φ(s) is a super solution for (31), so that the true solution
to (31) is bounded from above by 2φ(s) (which is the direction we care about).

If one initially has s(0) = 1
2 , i.e. if one starts with two clans of equal size, then

the expected time until one of the clans has died out is

(32) Texit = φ( 1
2 ) =

N − n∗c
Coff

ln 2.

By omitting the n∗c one obtains an upper bound which is independent of n∗c , namely

Texit ≤
N

Coff
ln 2.

8. The growth of new clans

We will now relax the assumption that there are no on events. We split the
membrane bound particles in two clans, one of which contains all initially present
particles and their descendants (“originals”), while the other consists of the particles
which arrive through on-events and their descendants (“newcomers”). Let n1(t) be
the number of newcomers at time t, and let n2(t) be the number of originals. The
pair (n1(t), n2(t)) evolves by a stochastic process whose generator is the same as
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in (26), except that an extra term must be included to account for the on-events.
Thus (n1, n2) evolves by the process with generator

(33) L∗ = Con(N − n1 − n2)D+
1

+ Cfb(N − n1 − n2)
{
n1D

+
1 + n2D

+
2

}
+ Coff

{
n1D

−
1 + n2D

−
2

}
.

Setting, as before, xi = ni/N and approximating the difference operators by differ-
ential operators, we get

L∗ = Con(1− x1 − x2)
{
∂1 + 1

2N ∂
2
1

}
(34)

+
(
NCfb(1− x1 − x2)− Coff

){
x1∂1 + x2∂2

}
+ 1

2N

(
NCfb(1− x1 − x2) + Coff

){
x1∂

2
1 + x2∂

2
2

}
= Con(1− r)

{
∂1 + 1

2N ∂
2
1

}
+ L,

where L is the operator given by equation (30).
As in §7 we change variables, r = x1 + x2, s = x1/(x1 + x2). We obtain

(35) L∗ = Con(1− r)
[
∂r +

1− s
r

∂s
]

+
Con(1− r)

2N

[
∂r + 1−s

r ∂s
]2

+ L.

As before we assume no variation in r (∂r = 0) and obtain

L∗ ≈Con(1− r)(1− s)
r

∂

∂s
+
Con(1− r)(1− s)2

2Nr

(
∂

∂s

)2

+
NCfb(1− r) + Coff

2Nr
s(1− s)

(
∂

∂s

)2

.

As r converges to the equilibrium value

r = 1− n∗c
N

+ o(N−1),

we substitute in

r = 1− n∗c
N

= 1− Coff

CfbN
and 1− r =

n∗c
N

=
Coff

CfbN

to get

L∗ ≈ ConCoff

Cfb(N − n∗c)
(1− s) ∂

∂s
+

ConCoff

(2Cfb(N − n∗c))2
s(1− s)

(
∂

∂s

)2

+
Coff

N − n∗c
s(1− s)

(
∂

∂s

)2

.

The above expression can be rewritten as

(36) L∗ ≈ Coff

N − n∗c

{
s(1− s)∂2

s + ε(1− s)∂s
}
,

where

ε =
Con

Cfb

and we neglect terms of order O(N − n∗c)−2.
In the situation we are concerned with we start the evolution with s = 0 at

t = 0 (initially there are no newcomers), and we want to know how long it takes the
ratio s(t) to reach a certain small fraction α (we will take α = 0.1), i.e. how much
time we have before α (10%) of the membrane population can trace its ancestry to
an on-event. This time is the exit time from the interval [0, α) through α, for the
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process which starts at s = 0 at t = 0 and evolves with generator L∗ above. The
exit time is given by φ(0) where φ is the solution of the boundary value problem

(37) − Lφ = 1, φ(α) = 0, φ “regular” at s = 0,

on the interval 0 < s < α. Regularity here means that φ′(0) must exist (this
is found by careful study of the generator and its possible domains). We must
therefore solve the differential equation

s(1− s)φ′′(s) + ε(1− s)φ′(s) = −N − n
∗
c

Coff
.

Multiplying with sε−1/(1− s) and integrating twice we get

sεφ′(s) = −N − n
∗
c

Coff

∫ s

0

σε

1− σ
dσ + C.

The requirement that φ′(s) be finite at s = 0 forces C = 0.
Set σ = sθ in the integral and divide by sε:

φ′(s) = −N − n
∗
c

Coff

∫ 1

0

θεdθ

1− sθ
.

Integrating again, and using the boundary condition φ(α) = 0 we get

φ(s) =
N − n∗c
Coff

∫ α

s

∫ 1

0

θεdθ

1− ςθ
dς.

This integral cannot be computed in terms of elementary functions, but since α is
a small number (α = 10% or less), we can say that 1 − ςθ ≈ 1 with an error of at
most 10%. Thus we find that

φ(s) ≈ N − n∗c
Coff

∫ α

s

∫ 1

0

θεdθdς =
N − n∗c
εCoff

(α− s).

Setting s = 0 and recalling the definition of ε we find that the expectation of the
time it takes until newcomers and their descendants make up a fraction α of the
total membrane population is

(38) α(N − n∗c)
Cfb

ConCoff
= α(N − n∗c)Ton,

where Ton was defined in (15). This is the expression we used in (16).

9. Implementation of the Model in Smoldyn

Simulations on Figure 5 (Main Text) were performed using stochastic particle
simulator Smoldyn v.2.15 (http://www.smoldyn.org/).

We consider a cell of volume V in which particles transition between the active
and inactive states according to the following

• Any inactive particle can spontaneously become active with rate Con.
• Any active particle can become inactive with rate Coff .
• Any active particle can recruit any inactive particle with rate Cfb.

At the same time the active particles undergo Brownian motion with Diffusion rate
DA, while inactive particles diffuse with rate DI .

We note that the model implemented in Smoldyn differs from the theoretical
treatment of the positive feedback circuit described above in several ways:

http://www.smoldyn.org/
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(1) the rate of diffusion DI for the inactive molecules is finite (We assume
that 0 < DA � DI <∞).

(2) Given the bimolecular rate Kfb, the reactant diffusion coefficients, and
the simulation time step, Smoldyn automatically computes a feedback
volume Vfb so that at steady state the stochastic simulations agree with
mass action theory.

(3) Within this small feedback volume a recruitment event occurs with prob-
ability one.

(4) Recruited molecules are offset spatially from their recruiters by a small
distance in order to reduce the probability of product recombination at
the next time step.

In the Smoldyn implementation the rates Con, Coff , Cfb are given by

(39) Coff = Koff [Time−1], Con = Kon [Time−1], Cfb = Kfb/V [Time−1].

Taking into account the dimensions of the parameters, the critical number of par-
ticles in the cytosol is given by

(40) n∗c =
Coff

Cfb
=
Koff V

Kfb

Note that in the Smoldyn implementation Cfb has no Vfb dependence, so equa-
tion 40 differs from equation 2. Consequently, the expected time between on events
Ton is inversely proportional to V :

Ton =
(
n∗cCon

)−1
=

Cfb

ConCoff
=

Kfb

KonKoffV
.

It follows that the requirement (19) that

Con

Cfb
� α

7 ln 2
(≈ 0.02 if α = 0.1).

becomes

(41) V � Kfb

Kon

α

7 ln 2
.

Similarly, the condition for the particles of the surviving clan to be localized to a
small region of the total volume becomes

(42) N ≤ Npol
def
= C2

Koff

DA
V +

Koff

Kfb
V

in 2D geometry and

(43) N ≤ Npol
def
= C2

KoffV
2/3

DA
+
Koff

Kfb
V

in a 3D volume.
As predicted by our theory, increasing number of particles throughout the sim-

ulation (see Figure 4a) we observed a transition from a homogeneous “off” state to
a clustered state to a homogeneous “on” state (see Supplemental Movie 1). Keeping
a fixed number of particles throughout the simulation (see Figure 4b) we observed
recurrent cluster formation in the predicted regime (see Supplemental Movie 2).

We also explored the parameter space needed to observe polarization for this
implementation of our model. Using the parameter values provided in the Appendix
we computed the region in the (V,N) plane for which polarization occurs (Main
Text Figure 5 and Supplemental Figure 3).
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(a) (b)

Figure 4. The total number of particles (solid curve) and the number of active particles
for (a) Supplemental Movie 1, (b) Supplemental Movie 2.

Appendix A. Smoldyn Code For a Sphere (V = 4
3πL

3)

# stochastic polarity model on a surface of a sphere

graphics opengl

graphic_iter 100

dim 3

species U

max_mol 20100

difc U(back) .01

difc U(bsoln) 100

color U(back) 1 0 0

color U(bsoln) 0 1 0

molecule_lists list1 list2

mol_list U(bsoln) list1

mol_list U(back) list2

display_size U(all) 5

time_start 0

time_stop 100

time_step 0.01

boundaries 0 -10 10

boundaries 1 -10 10

boundaries 2 -10 10

frame_thickness 0

max_surface 1

start_surface surf
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action both U transmit

color both 0.5 0.5 0.5

polygon both edge

rate U bsoln back 0.0

rate U back bsoln 10

thickness 1

max_panels sphere 1

panel sph 0 0 0 10 30 30 s1

end_surface

max_compartment 1

start_compartment inside

surface surf

point 0 0 0

end_compartment

surface_mol 5 U(back) surf sph s1

compartment_mol 1995 U(solution) inside

reaction_surface surf kfb U(back) + U(bsoln) -> U(back) + U(back) 10

product_placement kfb unbindrad 0.16

output_files surf2react3D_N2000_D10-2_run3.txt molpos_N2000_D10-2_run3.txt

cmd n 100 molcountonsurf surf surf2react3D_N2000_D10-2_run3.txt

#cmd e ifno U(back) fixmolcountonsurf U(back) 1 surf

cmd @ 100 molpos U(back) molpos_N2000_D10-2_run3.txt

tiff_iter 1000

tiff_name surf2react3DN2000koff10kfb10D001run3_

end_file

Appendix B. Smoldyn Code For a 3D Domain (V = L3)

graphics opengl

graphic_iter 100

dim 3

max_species 10

species A

species B

molecule_lists list1 list2

mol_list A list1

mol_list B list2

max_mol 6000

difc A 0.01

difc B 100
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time_start 0

time_stop 100

time_step 0.0005

boundaries 0 0 10 r

boundaries 1 0 10 r

boundaries 2 0 10 r

mol 5 A u u u

mol 4995 B u u u

color A 1 0 0

color B 0 1 0

output_files phaseplane3DN5000V10_offset09.txt molpos3DN5000V10_offset09.txt

cmd n 1000 molcount phaseplane3DN5000V10_offset09.txt

cmd @ 100 listmols molpos3DN5000V10_offset09.txt

reaction off A -> B 10

reaction kon B -> A 0.00001

reaction bireact A + B -> A + A 40

#rate=40 & time_step=10^(-3) <=> binding radius=0.174157

#product_placement bireact unbindrad .175

product_placement bireact offset A 0.09 0.09 0.09

# for N>koff*V/kfb should get an endemic steady state

end_file

Appendix C. Smoldyn Code For a 2D domain (V = L2)

# Simulation file for 2 interconverting species

graphics opengl

graphic_iter 50

dim 2

species U V

max_mol 20100

molecule_lists Ulist Vlist

mol_list U Ulist

mol_list V Vlist

difc U .01

difc V 10

color U 1 0 0

color V 0 1 0

display_size U 3
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display_size V 3

time_start 0

time_stop 100

time_step 0.001

boundaries 0 0 40 r

boundaries 1 0 40 r

mol 10 U u u

mol 1590 V u u

cmd b pause

reaction gamma U -> V 40

reaction kon V -> U 0.00001

reaction beta U + V -> U + U 40

# for N>gamma*V/beta should get an endemic steady state

output_files outfile_SISN1600V40.txt molpos_SISN1600V40.txt

cmd n 100 molcount outfile_SISN1600V40.txt

cmd @ 100 molpos U molpos_SISN1600V40.txt

tiff_iter 5000

tiff_name 2species2DN1600kon10-5koff40kfb40V40D001_

end_file
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