
Text S2: Modeling CTL killing with handling time and virus epitope dynam-
ics

The models we study in this paper are instances of a more general model of the interactions be-
tween CTL and infected cells structured with respect to their age since infection. The model is
illustrated in the figure and described below.
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Figure 1. A model of CTL killing incorporating (i) the efficiency of detection of infected cells as a
function of age since infection, and (ii) the time taken for CTL to lyse their targets.
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∂a
= − (kC(t) + µ(a))T (a, t) + φ(a)C1(a, t) (1)

T (a = 0, t) = ε

∫ ∞
0

m(a)T (a, t) da (2)

dC

dt
= ρC3(t) +

∫ ∞
0

{(µ(a) + φ(a))C1(a, t)− kC(t)T (a, t)} da (3)

∂C1

∂t
+
∂C1

∂a
= kC(t)T (a, t)− (µ(a) + φ(a) + λ(a))C1(a, t) (4)

dC2

dt
=

∫ ∞
0

λ(a)C1(a, t) da− νC2(t) (5)

dC3

dt
= νC2(t)− ρC3(t) (6)

The populations T , C, C1, C2 and C3 are defined as follows. T (a, t) is the population density of
infected cells of age a in the tissue, such that

∫ a+δa
a

T (a, t) da is the density of cells at time twith an
age since infection in the range (a, a+δa); the total density of infected cells is

∫∞
0
T (a, t) da ∈ [0, 1].

C(t) ∈ [0, 1] is the density of free CTL; C1(a, t) is the density of CTL that are conjugated to live cells
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of infection age a and surveying them, such that
∫
C1(a, t) da ∈ [0, 1]; C2(t) ∈ [0, 1] is the density

of CTL conjugated to infected cells during lysis; and C3(t) ∈ [0, 1] is the density of CTL recently
disengaged from a lytic event but unable to kill.

The parameters are defined as follows:

• k is the rate that a CTL moves between cells, such that 1/k is the expected time to a CTL’s
next encounter with any cell, and (k

∫
T (a, t)da)−1 is the expected time to a given CTL’s next

encounter with an infected cell of any age.

• µ(a) is the age-dependent rate of loss of cells due to non-CTL mediated mechanisms such as
natural mortality and viral cytopathicity.

• m(a) is the rate of production of virions by an infected cell at age a after infection.

• ε is the mean number of infected cells arising from a single virion.

• φ(a) is the rate at which a CTL conjugated with an infected cell of age a disengages without
lysis.

• λ(a) is the rate at which, following an encounter, a CTL successfully identifies an infected
cell of age a and begins the process of lysis.

• ν is the rate at which a CTL disengages from an apoptotic cell; so 1/ν is the mean time a CTL
spends attached to a cell following the initiation of lysis.

• ρ is the rate at which a disengaged CTL recovers and again becomes able to detect infected
cells.

Implicit in the equations above is a quasi-steady state assumption for the dynamics of free virus,
and the assumption that susceptible cells are in abundance. We assume that free virus has a very
short half-life in the extracellular space and so the rate of infection is directly proportional to the
total rate of virus production.

The first model in the text (eqns. 4-6) derives from this model as follows. All quantities are inde-
pendent of the age since infection, a; CTL recognise infected cells immediately following encounter
(φ = 0 and λ =∞); there is no natural mortality of infected cells (µ = 0) and no spread of infection
from cell to cell (m = ε = 0); CTL-infected cell conjugates break up at rate ν, and CTL recovery is
assumed to be included in this process (ρ =∞).

The second model (eqns. 13 and 14) derives from it as follows. Following a CTL’s encounter with
an infected cell of age a, it is recognised as infected with probability p(a) ≡ λ(a)/(λ(a) + φ(a)),
killed instantly (λ(a) → ∞ and φ(a) → ∞ such that p(a) is invariant; and ν = ∞) and the CTL
recovers instantly (ρ =∞). This yields the age-specific rate of surveillance k(a) = p(a)k.
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