
1

SUPPORTING TEXT S1

Information routing driven by background chatter in a signaling

network

Núria Domedel-Puig1,∗, Pau Rué1,∗, Antonio J. Pons1, Jordi Garćıa-Ojalvo1,¶

1 Departament de F́ısica i Enginyeria Nuclear, Universitat Politècnica de Catalunya,

Terrassa, Barcelona, Spain

∗ Equal contribution

¶ E-mail: jordi.g.ojalvo@upc.edu

S1 Boolean network modeling

Boolean networks (BN), introduced by Kauffman in 1969, are defined as sets of dynamical units, called
nodes, which are connected by interaction edges. The dynamic evolution of a Boolean network is charac-
terized by logic operations which act upon binary state variables defined in each node. Thus, the state of
every node i at time t, xi(t), is either active (xi(t) = 1) or inactive (xi(t) = 0) and all nodes are updated
synchronously according to a set of node-specific logic rules [S1]. Here we will work with non-autonomous
BNs, in which two types of nodes exist according to its dynamics: internal nodes and input nodes. In
particular, every internal node i has an associated logic rule, fi, which determines the new state xi(t) at
time t from the states of its ki incident nodes at time t− 1:

xi(t) = fi(x
1
i (t− 1), . . . , xki

i (t− 1)) (S1)

The state of the input nodes, in contrast, does not depend on the state of other nodes but is given
externally. Here we set these states using periodic and random value sequences. The update rules,
fi, i = 1, . . . , N , can be specified either as a truth table or as a composition of basic logic functions
(ANDs, ORs, NOTs ...). Simulations obtained using these functions are, in general, more efficient than
those obtained using truth tables. To speed up the simulation runtime, we transformed the original
truth tables [S2] to the corresponding equivalent logic functions using an adapted version of the Quine-
McCluskey algorithm [S3]. We implemented the Boolean network simulator in Python (the custom-made
code is available at http://code.google.com/p/bnsim).

In order to generate the stochastic input sequences, we use Bernoulli distributions with success proba-
bility equal to q, which we define as the chatter level. Bernoulli distribution sequences are obtained using
a standard Mersenne twister pseudo-random number generator [S4].

S2 Network properties

The BN model used in this work was obtained from the MathBio web in the form of a list of nodes
with an associated truth table (http://mathbio.unomaha.edu/Database). This network describes the
signaling pathways present in a prototypical human fibroblast, and was built by Helikar et al. [S2] using
the information obtained from a large body of literature and is formed by 9 input nodes that feed 130
internal nodes. Input nodes represent signals of varying nature, namely stress signals (oxidative stress and
the IL1/TNF−α route), growth factors (EGF), calcium channels (Ca2+ pump), signaling by extracellular
matrix components (ECM), and by ligands that use G-protein coupled receptors (one for each subtype
of G protein α subunit: αs, αi, αq, α12,13). The average number of inputs per node (in-degree) and the
average number of nodes affected by one given node (out-degree) are both 3.9. The structure of this
network is very different from classical Kauffman networks [S1]. Specifically, neither the in-degree nor

http://code.google.com/p/bnsim
http://mathbio.unomaha.edu/Database

2

the out-degree distributions are uniform throughout the network, contrary to Kauffman networks. For
instance, while there are 21 nodes with a single input, the Src protein is affected by 11 different nodes
(its in-degree is equal to 11) and affects 28 downstream nodes (its out-degree is equal to 28). In fact, Src
is the protein with highest out-degree and closeness centrality. Other interesting nodes are Rac, which
integrates information from 13 species (maximum in-degree) and Erk, which is the node that participates
the most in the shortest paths among all pairs of species (highest betweenness centrality). Another
important characteristic of this network is the high proportion of canalizing functions [S2, S5]. A node
rule fi is said to be canalizing for a given input if its output is completely determined by at least one
specific value of that input, independently of the values of the remaining inputs. As an example, consider
the canalizing rule f(x1, x2, x3) = x1 OR(x2 ANDx3). Note that, with this logic, whenever x1 takes the
value 1, the output is 1, independently of the truth values of x2 and x3. In this case, f is canalizing

for x1, and x1 is a canalizing input of f . A total of 96 nodes in the fibroblast network are canalizing
for at least one of their inputs. In addition, 168 from the 542 interactions are canalizing. For instance,
Src protein acts in a canalizing manner for 8 of its immediately downstream proteins while PI4K, Mekk1
and PI3K have 4 canalizing inputs. There are no paths from inputs to specific outputs built fully from
canalizing functions, except the direct link going from ECM to Rac.

S3 Simulation conditions

For each simulation condition considered in our study, we have run R = 201 different realizations of
the dynamics. Each of these realizations can be regarded as the time evolution of a particular cell, and
differs from the others in the initial state of all the internal nodes, which are set randomly, and by the
different realizations of input chatter. The population activity is obtained as the average over individual
realizations, Xi(t) =

1
R

∑R
cell=1 xi,cell(t). This quantity corresponds to the probability of the node i being

active at time t in the limit of large R.
In this work we perform two types of numerical experiments. In the first type, we set all 9 inputs

to a given (constant) chatter level and observe the population activity of the output nodes. In the
second type, we force one input to be a periodic sequence of ones and zeros (representing an alternative
switch ON and OFF of its activity) and set the rest of inputs to a fixed chatter level. We refer to this
periodically switching input as the stimulated input or structured signal. The period chosen, T0 = 20
(ten ones followed by ten zeros), is of the same magnitude as the average transient time needed to reach
periodic attractors for fixed inputs [S6].

All simulations in this work have been run for 1600 iteration steps. The first 160 iteration steps were
disregarded in order to ensure that no transient dynamics were present in the subsequent analysis.

S4 Network randomization

We have taken two distinct approaches to randomize the original network (see Figure S1), keeping in
both cases the topology of the network constant, while varying the rules of the nodes. In the first case
(altered-logic networks, AL), the network is randomized by sampling a completely new random rule for
each node, with the only constraint that the number of ones in the truth table is the same as in the
original table. The algorithm used to generate this kind of network is the following: for every internal
node, i, of the network, we take its original truth table, consisting of 2ki entries, and count the number of
entries that lead to an active state of node i, say n(i). For the new network, we reassign the n(i) entries

that lead to the active state for this node. Taking into account that there are
(

2ki

n(i)

)

different possible logic

rules for every node i, we see that the number of possible networks produced in this way is extremely
large. These networks are structurally equivalent to the original BN in the sense that the links forming
them are maintained. However, the distribution of logic rules is completely different. In particular,

3

the distribution of canalizing functions for this family of networks is very narrow and is centered on 63
canalizing functions, while the original network has exactly 96 (see Figure S3).

We built a second type of randomized network by shuffling the inputs of the logic rules of each internal
node (altered-input networks, AI). In this case, the procedure for generating the network is the following:
for each internal node, i, with ki inputs, we randomly draw a permutation, σ : {1, . . . , ki} → {1, . . . , ki},
defining the new logic rule, f̄i, as:

f̄i(y1, . . . , yki
) = fi

(

yσ(1), . . . , yσ(ki)

)

(S2)

Even though the roles of the input species for every node are changed, this building procedure ensures
that the type of logic rule for every node is the same as in the original network. The number of canalizing
functions of the network is preserved. Thus, the type of networks produced in this way, while having
different connectivity than the original network, are topologically very similar to it. Again, taking into
account that there are ki! different logic rules for every node, we see that the number of possible networks
produced following this algorithm is very large. We have simulated and analyzed 100 random networks
of each type.

S5 Robustness to asynchronous updating

As explained in the main text, our simulations have been performed using synchronous updating. Asyn-
chronous updating has been shown to destroy some of the attractors found in networks previously sim-
ulated with a synchronous-updating framework (see, for instance, Refs. [S7, S8]). We have shown in a
previous publication [S6] that when input nodes are subject to variability, attractors cannot be reached
because states are forced to change exogenously (except for q = 0 and q = 1). Therefore, the effect of an
asynchronous updating scheme upon the network attractors is similar to the effect of chatter. We can
thus expect the behavior reported here not to be qualitatively altered when the updating is asynchronous.
To verify this point, we have implemented different asynchronous updating schemes in our model.

In a first asynchronous method, the updating order of the nodes is randomized at each iteration,
and all nodes of the network are updated sequentially following this order. In that way, one iteration in
this scheme corresponds to updating once the whole network, as in the synchronous scheme. However,
this is an extreme change with respect to the synchronous method, in the sense that we switch from a
parallel updating order (synchronous update) to the opposite scenario in which the asynchronous updating
sequence is specific to each iteration. To examine an intermediate situation, we have implemented a second
asynchronous update method in which every iteration is composed of two steps. During each of these
steps, a different partition of nodes is updated synchronously. Nodes are assigned to the early-update
partition according to a given probability p, which we set to 0.95 to model a soft asynchronous updating
(close to the purely synchronous case defined by p = 1), while p = 0.5 models a more asynchronous
method.

Both asynchronous update schemes described here share the fact that they select the nodes randomly
at each iteration. This fact strongly suppresses the ability for the structured ordering coming from the
periodic input to systematically percolate spuriously through the network. However, the results (see
Figure S11) show that the nontrivial influence of chatter on the response to a periodic input persists
in the presence of asynchronous updating. The transmission of the input signal in this case can thus
be attributed only to the robustness of the dynamical behavior with respect to these causal destructive
updates.

S6 Role of temporal variation

As discussed in the preceding section, the temporal variation associated with chatter prevents the system
from becoming trapped in attractors, in which some nodes might become permanently unresponsive to

4

the input signal. Thus the response of the network to chatter goes beyond a mere sensitivity to different
average levels of network activity in different nodes. To verify this, we run simulations in which the chatter
is fixed to its initial value (quenched chatter), and calculate the number of cells (i.e. realizations) that
are responsive to the input, comparing it with the case of temporally variable chatter (the one considered
in the main text). A cell is considered responsive if the maximum value of the cross-correlation function
between the input signal and a certain output response is larger than a given threshold (chosen here equal
to 6.25% of the maximum correlation, without loss of generality). Our results, displayed in Figure S12,
show that the fraction of responsive cells for a given input is substantially smaller in the case of quenched
chatter, for all chatter levels. Thus temporal variability of the chatter plays a relevant role in the behavior
reported.

S7 Methods

S7.1 Power spectral density and maximum cross-correlations

When one of the inputs carries a structured signal, we are interested in identifying those nodes of the
network that are oscillating at the frequency of that input. To characterize that response we estimated
the power spectral density (PSD) of the time series of the population average activities of all nodes,
using the Welch periodogram method. The network nodes that present a clear peak centered at the
stimulation frequency in the power spectrum are considered to be responsive to that input. We quantify
this responsiveness in terms of the value of the PSD at the input frequency, ν0 = 1/20.

Besides identifying the nodes that reproduce the structured signal, we want to estimate which pairs
of interacting nodes, i and j, have correlated signals. To quantify this, we measure the cross-correlation
of the average activity,

cij(τ) =
1

T − τ

T
∑

t=τ

(

Xi(t)− 〈Xi〉
)(

Xj(t− τ)− 〈Xj〉
)

(S3)

where 〈·〉 represents the standard time average. The cross-correlation function cij(τ) measures how similar
the population signals Xi and Xj are when the second signal presents a temporal delay of τ with respect
to the first one. Although it is known that correlation does not imply causality, if two linked nodes are
correlated, it is often reasonable to assume that the source node transmits information to the target node
of the link. For each edge of the network, a simple measure of information transmission is, hence, the
maximum value of the cross-correlation with respect to the delay τ , Cij(q) = maxτ∈{0,...,T0} |cij(τ)| where
T0 is the period length and the absolute value in the formula accounts for phase inversions.

S7.2 Identification of dominant paths

The chatter level establishes groups of interconnected internal nodes, which define paths that convey
information from input to outputs nodes (see main text). In order to characterize which of these paths
are dominant in transmitting information, we resorted to optimization algorithms of graph theory. To
apply these algorithms, we had to assign a weight to each edge of the network. A simple measure of
information transmission through each edge is the maximum value of the cross-correlation, which can
thus be used as a weight:

Cij(q) = max
τ∈{0,...,T0}

|cij(τ)| (S4)

We built a directed weighted graph using a measure based on this assignment. The idea is to determine
the paths going from each input node to each output node in such a way that each edge forming this
path has a high enough maximum cross-correlation. Hence, every path going from a node i to a node j
is formed by a set of edges, {(i1, i2), (i2, i3), . . . , (iL−1, iL)}, in such a way that i1 = i and iL = j. The

5

criterion we chose was to assign a weight equal to the inverse of Cij , Wij = C−1
ij , to each edge (i, j), and

to look for paths that minimize the sum of these weights. We define a correlation score or cost function,
S, for each path, as the inverse of the sum of weights along it:

S ({(i1, i2), (i2, i3), . . . , (iL−1, iL)}) =

(

L−1
∑

k=1

Wik,ik+1

)−1

(S5)

To obtain the paths with maximum correlation score, we used the K−th shortest path algorithm [S9],
which identifies the first K paths with minimum sum of weights, and thus the maximum path score
(K−th shortest path algorithm with K = 10 shortest paths). This approach is well suited for our
problem because it penalizes large paths, in which case more terms are added to the path score, and
paths where at least one of the edges has a low maximum cross-correlation value, Cik,ik+1

. We set the
number of top shortest paths to be found, K, to a high enough value, such as K = 10, which ensures
that all paths with high scores are identified. After finding the highest score paths for all q values, a
threshold-based filtering is set to find those paths with scores higher than a certain level, Sc.

S7.3 Definition of node and edge sensitivities

As in many dynamic systems, a measure of how sensitive the response of the system is to a certain
parameter can be introduced for our model. In particular, we can define measures of sensitivity to
chatter level for both nodes and edges of the network. We define the sensitivity of nodes to chatter as
the variations of power spectral density at the input frequency with respect to variations in the chatter.
In mathematical terms, the sensitivity of node i can be defined as Si(q) =

∂
∂q
PSDi(ν0)|q. Likewise, we

define the sensitivity of edges to chatter variations as Sij(q) =
∂
∂q
Cij(q)|q. Both derivatives are estimated

by centered differences with a differentiation step of δq = 0.05.

Supporting References

S1. Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J

Theor Biol 22:437–467.

S2. Helikar T, Konvalina J, Heidel J, Rogers J (2008) Emergent decision-making in biological signal
transduction networks. Proc Natl Acad Sci USA 105:1913–1918.

S3. Quine WV (1952) The problem of simplifying truth functions. Am Math Mon 59:521–531.

S4. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM T Model Comput S 8:3–30.

S5. Kauffman S, Peterson C, Samuelsson B, Troein C (2004) Genetic networks with canalyzing Boolean
rules are always stable. Proc Natl Acad Sci USA 101:17102–17107.

S6. Rue P, Pons AJ, Domedel-Puig N, Garcia-Ojalvo J (2010) Relaxation dynamics and frequency
response of a noisy cell signaling network. Chaos 20:045110.

S7. Klemm K, Bornholdt S (2005) Stable and unstable attractors in Boolean networks. Phys Rev E

72:055101(R).

S8. Greil F, Drossel B (2005) Dynamics of critical Kauffman networks under asynchronous stochastic
update. Phys Rev Lett 95:048701.

S9. Martins EQV, Pascoal MMB (2003) A new implementation of Yen’s ranking loopless paths algo-
rithm. 4OR - Q J Oper Res 1:121–133.

	Boolean network modeling
	Network properties
	Simulation conditions
	Network randomization
	Robustness to asynchronous updating
	Role of temporal variation
	Methods
	Power spectral density and maximum cross-correlations
	Identification of dominant paths
	Definition of node and edge sensitivities

