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1. Modeling genetic network using Dynamic Bayesian network (DBN) 

 To search for reprogramming recipes, we need to make de novo predictions of the 

phenotypic consequences of perturbations to a genetic network. We use expression levels of all 

the genes in the network to represent phenotypes, i.e. ES or differentiation state. We choose 

dynamic Bayesian network (DBN)(1) to model the curated hESC network (Figure 1) that contain 

many feedback loops. Prediction of consequences of a perturbation is an inference problem in 

DBN. Genomic data, either perturbation (gene knockdown or overexpression) or temporal gene 

expression data, that are conventionally used to train the parameters or learn the structure of the 

DBN(1), are very limited in hESC. Therefore, we take a new method(2, 3) based on the 

constraint imposed by the network structure on the parameter space to conduct inference. We 

showed that this method achieved a satisfactory performance on predicting gene expression 

changes upon perturbation in the hESC (Figure 2 and SR1). Our model also allows efficient 

calculation of the potential landscape in the cell state space and monitoring the reprogramming 

progress in this landscape.  

 

 We first describe how to build the DBN by unrolling the cyclic genetic network. We next 

lay out the framework of learning constraints of the parameters in the DBN model from the 

network topology and literature knowledge and how to implement this framework to model the 

genetic network. Then, we show how to conduct inference in the constraint-based DBN model 

and how to predict gene expression changes in the genetic network using this method. Finally, 

we illustrate the application of our method to calculate the potential landscape in the cell state 

space. 

 

1.1 Modeling Cyclic Network using DBN 

1.1.1 Unrolling Cyclic Network  

 The curated genetic network in hESCs contains many cyclic regulations (Figure 1). In 

this section, we discuss in detail how to transform a cyclic network into a dynamic Bayesian 

network (DBN), which is designed to capture the dynamics of a cyclic network by decomposing 

the feedback loops into a series of temporal structures. 

    

Definition 1.1.1 A cyclic genetic network is denoted by G. A DBN is defined by its initial static 

model B0 and dynamic model Bt, i.e. (B0, Bt). The dynamic process of G with a DBN model can 

be described as: 

    (B0, Bt) = f(G)       (1) 

where f denotes the graphical transformation from G to (B0, Bt). 

  

 The cyclic network of a biological system (G) does not indicate how to determine the set 

of interface nodes for unrolling. Thusly, we need to assume that the temporal dynamics of the 

cyclic biological network are triggered by the feedback links and the nodes involved in these 

links are natural candidates for cutting the loops to unroll G.  

 

Definition 1.1.2 An unrolling scheme fb is defined as a transformation of G into a DBN. Since 

the DBN represents a process which is stationary and Markovian, a DBN can be alternatively 

depicted by a 2TBN consisted of the first two time slices of a process, i.e. fb(G)=(B1, B2, B12), 

where B1= B2=G(V\V’) and B12=V’. B1 is the first time slice network and B2 is the second time 
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slice network. B12 represents the edges from the outgoing interface (I1) in B1 to their incoming 

nodes (I2) in B2. B1 and B2 are intra-slice models and B12 represents the transitional links from 

the first time slice B1 to the second time slice B2. V denotes all the edges in G. Let X denote the 

set of outgoing interface (I1) nodes in the first time slice B1 and Y the set of incoming interface 

(I2) nodes in the second-slice B2. V’ denotes all the edges between X and Y. An example is 

shown in Figure S1. 

 
Figure S1. Unrolling cyclic network. The shaded nodes represent the cut nodes in G. X include 

D1 and E1. Y include B2 and C2.  

 

 There might be multiple strategies for unrolling the cycles in G if the interface nodes are 

unknown. In principle, any node in a loop can be used to break the loop. Multiple nodes may 

also be shared by two or more cycles which can be used to cut the loops in G. For example, in 

Figure S1, there are two loops: i) B->D->B and ii) C->D->E->C. For the first loop, there are two 

possible choices on the interface nodes, i.e. B or D. For the second loop, there are three possible 

choices, i.e. C, D and E. These different cutting patterns will result in different message-passing 

pathways and computational complexity. As shown in Figure S2, in the upper panel, D is the 

only interface node and the outgoing edges from D to B and from D to E are unrolled; in the 

lower panel, D and C are selected as interface nodes, the outgoing edges from D to B and from C 

to D are unrolled. 
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Figure S2. Examples of possible unrolling schemes 

 

1.1.2 Identifying interface nodes 

 DBN represents a stochastic process with an initial model and a series of dynamic models 

whose stationary posterior probability distribution converge to its true value after sufficient 

steps. The system dynamics and delays between two consecutive time steps are invoked by the 

belief transition and updates between outgoing interface (I1) in the last time step and the 

incoming interface (I2) in the next time step of a DBN. Therefore, the outgoing and incoming 

interfaces of a DBN should contain nodes whose state transitions and belief changes trigger the 

whole network (system) evolvement. Since outgoing interfaces separate the current network 

from the past, only the potential function over the outgoing interface is required when 

forwarding the network belief at the current step to the next step. Computationally, we need to 

store this vector of information. The size of this vector is    where n is the number of the 

discrete-value variables in the outgoing interface and m is the number of the discrete values a 

variable can take. In this paper, we assume all nodes in the DBN are binary variables, i.e. m=2. 

To reduce computational cost and memory load, we should keep n as small as possible. 

 

 In the cyclic network, the stochastic dynamics of a system is dominated by the loopy 

links between the nodes. Therefore, we have developed a scheme to identify an optimal set of 

interface nodes to maintain the temporal properties of the original network G and reduce the 

computational complexity incurred by this unrolling scheme. We firstly employed depth-first 

search(4) to identify all the nodes involved in the non-repeating loops in the curated genetic 

network as candidates for the interface nodes (Table S1), which are presumably important for the 

network’s stochastic dynamics. The candidate interface nodes involved in all the non-repeating 

loops are listed in Table S2 and Figure S3.  Next, to reduce inference complexity, we minimize 
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the interface set. In particular, we rank all candidates by a heuristic score=B/(1-A). If this 

candidate is a must-cut node (loops must be cut at this node in order to keep the unrolled graph 

acyclic, such as auto-regulation node), A=1, then its score becomes positive infinity (maximum). 

Otherwise A=0 and score=B. B is the number of total loops of which this node is a member. If a 

node is not in a loop, then B=0 and score=0. The values of A and B associated with each 

interface candidate is listed in Table S2. We iteratively pick nodes with the biggest score value 

from the list and cut all outgoing edges which are part of any loop from this node. We repeat this 

step until all loops are broken. All selected nodes compose the outgoing interface and these 

nodes are {NANOG, SP1, Oct4-Sox2, CDX2, PIAS1, GATA6, FOXA2, FOXA1} (yellow-

colored nodes in Figure 1B in the main text).  

 

Table S1. All non-repeating Loops in the curated genetic network 

Loop Number of genes 

NANOG -> ZIC3 -> SOX2 -> Oct4-Sox2 -> OCT4 -> NANOG 5 

Oct4-Sox2 -> SOX2 -> NANOG -> GATA6 -> OCT4 -> Oct4-Sox2 5 

Oct4-Sox2 -> SOX2 -> NANOG -> KLF4 -> OCT4 -> Oct4-Sox2 5 

Oct4-Sox2 -> SOX2 -> NANOG -> NANOG -> GATA6 -> OCT4 -> Oct4-Sox2 5 

Oct4-Sox2 -> SOX2 -> NANOG -> NANOG -> KLF4 -> OCT4 -> Oct4-Sox2 5 

NANOG -> KLF4 -> OCT4 ->CDX2 -> NANOG 4 

GATA6 -> GATA4 -> NANOG -> GATA6 3 

GATA6 ->LMCD1 -> NANOG -> GATA6 3 

GATA6 -> OCT4 ->NANOG -> GATA6 3 

GATA6 -> PRDM14 ->NANOG -> GATA6 3 

NANOG -> KLF4 -> OCT4 -> NANOG 3 

NANOG -> KLF4 -> SOX2 -> NANOG 3 

NANOG -> Oct4-Sox2 -> OCT4 -> NANOG 3 

NANOG -> Oct4-Sox2 -> SOX2 -> NANOG 3 

NANOG -> ZIC3 -> SOX2 -> NANOG 3 

Oct4-Sox2 -> SOX2 -> NANOG -> NANOG -> Oct4-Sox2 3 

Oct4-Sox2 -> SOX2 -> NANOG -> Oct4-Sox2 3 

CDX2 ->OCT4 -> CDX2 2 

CEBP ->SP1 -> CEBP 2 

GATA6 -> NANOG -> GATA6 2 

MYC-SP1 -> SP1 -> MYC-SP1 2 

NANOG -> KLF4 -> NANOG 2 

NANOG -> ZIC3 -> NANOG 2 

OCT4 -> Oct4-Sox2 -> OCT4 2 

Oct4-Sox2 -> SOX2 -> Oct4-Sox2 2 

PBX1 -> NANOG -> PBX1 2 

CDX2 -> CDX2 1 

FOXA1 -> FOXA1 1 

FOXA2 -> FOXA2 1 
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GATA6 -> GATA6 1 

NANOG -> NANOG 1 

SP1 -> SP1 1 

PIAS1 -> PIAS1 1 

 

Table S2. All candidates of interface nodes in the curated genetic network 

Genes # of loops (B)* Must-cut (A)* 

Oct4-Sox2 11 0 

SOX2 11 0 

NANOG 22 0 

KLF4 6 0 

OCT4 11 0 

ZIC3 3 0 

PBX1 1 0 

FOXA2 1 1 

FOXA1 1 1 

PIAS1 1 1 

SP1 3 1 

CEBP 1 0 

MYC-SP1 1 0 

GATA6 8 1 

CDX2 3 1 

# of loops=The number of loops that pass through a node. This value equals the B value. Must-

cut indicates whether a node must be cut to unroll a cycle, e.g. auto-regulation: 1=true and 

0=false. This value is equal to the A value.  

 

Figure S3. Number of loops for each node in the curated genetic network 

 
 

1.1.3 Interface Algorithm 

0

5

10

15

20

25

N
A

N
O

G

O
C

T4

SO
X

2

O
ct

4
-S

o
x2

G
A

TA
6

K
LF

4

ZI
C

3

SP
1

C
D

X
2

P
B

X
1

FO
X

A
2

FO
X

A
1

P
IA

S1

C
EB

P

M
YC

-S
P

1Lo
o

p
y 

R
e

gu
la

ti
o

n
s/

N
o

d
e

Genes



7 
 

 In this section, we briefly describe the interface algorithm using an example. The 

interface algorithm(1) begins with constructing two junction trees for B0 and Bt in a DBN model 

(see definition 1.1.1) respectively. For smoothing, filtering and predicting, we only need to query 

those values based on the distribution over the interface nodes at the current time step. To do 

this, we use the clique potential of the outgoing interface (I1) from the previous time step to 

encapsulate all required information of the process up to the present time step. In the context of 

junction trees, this means maintaining the potential of the clique which contains the interface at 

each time step.  Thus, we need to ensure that the outgoing interface is fully contained within at 

least one clique of each junction tree. After the junction trees for B0 and Bt are constructed 

respectively, standard junction tree inference is performed to compress all the beliefs and 

information into the interface clique potential. This resulted potential of interface clique enters 

the same junction tree (same structure) at the next time step. This iterative process continues 

until the Markovian chain (chain of junction trees) is converged.  

 

We demonstrate how the interface algorithm works on a simple example in Figure S4 to 

S6 and summarize the algorithm in Table S3. The junction tree for the curated genetic network is 

shown in Figure S7.  

 

In the first step (Figure S4), we create a junction tree J0 from B0. Given a 2TBN Bt, we 

recover B0 by removing all the nodes in the second time slice of Bt (Bt,2) and all the edges 

emitted from the 1
st
 time slice of Bt (Bt,1). Next, B0 is moralized, producing a moral graph. Then, 

in order to ensure that the outgoing interface I0 is fully contained within at least one clique of 

each junction tree, edges are added between all nodes in I0. Finally, we employ standard junction 

tree triangulation, formation, and clique potential initialization process to produce the junction 

tree J0. The clique containing the outgoing interface I0 in J0 is labeled as the in-/out-clique.(1, 5, 

6) 

  

In the second step (Figure S5), we firstly identify the interface nodes in the outgoing 

interface of time slice 1 and 2. We represent these nodes as I1 and I2. In general, we can use It-1 

and It to represent the interface at time slice 1 and 2 of any t-th 2TBN. Next, we create a “1.5-

slice DBN” (Ht) from the 2TBN Bt by removing all non-interface nodes in the 1
st
 time slice of Bt 

while keeping the interface nodes I1 (or It-1), Next, we construct a junction tree, Jt, for each Ht. In 

order to keep track of the joint probability of the interface nodes P(It-1) and P(It), we must 

enforce the constraint that It-1 and It each forms a clique. This can be ensured by simply adding 

edges to the moral graph between all nodes in It-1, and similarly for It, before constructing Jt. We 

can now glue all the junction trees together via their interfaces. Then we triangulate Jt the same 

way as we triangulated J0. The junction tree is created as before, but clique potential initialization 

proceeds slightly differently than in the static case. When initializing clique potentials, only 

conditional probability tables (CPTs) of nodes in time slice 2 of the original 2TBN are multiplied 

onto cliques in the junction tree
1, 5

.  

 

The third step (Figure S6) is performed iteratively. Once the junction trees have been 

constructed and initialized, inference is performed through two stages of message-passing (see 

section 2.4). The clique containing the outgoing interface in slice t−1 is called the in-clique, 

while the clique containing the outgoing interface in slice t is called out-clique. At time t-1, the 

junction tree Jt-1 is created and initialized for the (t-1)-th 1.5-slice DBN which consists of time 
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slices (t-1,t) and the inference is performed on Jt-1 by message-passing. Once the forward-

backward message passing is completed, the out-clique potential is marginalized down to the 

outgoing interface potential and the interface algorithm is ready to advance this inference to the 

next time step t. At time t, the junction tree Jt is constructed and initialized for the t-th 1.5-slice 

DBN which consists of time slices (t,t+1). The outgoing interface potential of Jt-1 from last step 

is multiplied by the in-clique potential in the t-th 1.5-slice DBN. Note that since the 1.5-slice 

DBN structure is consistent, the j-tree structure of Jt-1 is the same to that of Jt. Thusly, we can 

simply build the junction tree once and use it for all time steps at which inference is performed. 

At each time step, the junction tree only needs to be re-initialized to its initial clique potentials
1, 5

.  

 
Figure S4. Step 1 of Interface Algorithm: Construct junction tree J0 from 1

st
-time slice of 

2TBN B0 
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Figure S5. Step 2 of Interface Algorithm: Construct junction tree Jt from 1.5-slice of 2TBN 

Ht. 
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Figure S6. Step 3 of Interface Algorithm: Iterative “forward advance” inference through 

message-passing. 

 

Table S3. Summary of Interface Algorithm 

Step 1: 

Creation and 

Initialization of 

J0 

 Remove all the nodes in time slice 2 from a 2TBN 

 Identify nodes in outgoing interface of time slice 1, name it I1 

 Moralize, add edges to make I1 a clique 

 Triangulate and find cliques for J0 

 Identify in- and out- cliques that contains I1 

 Initialize clique potentials to 1s and multiply nodes CPTs onto cliques (same to 

static BN) 

Step 2: 

Creation and 

Initialization of 

Jt 

 Begin with the whole 2TBN, identify nodes in interface of time slice 1 and slice 

2 respectively, name them I1 and I2 

 Convert 2TBN to 1.5-slice DBN by removing non-interface nodes in time slice 1 

 Moralize and add edges to make I1 and I2 each a clique 

 Triangulate and find cliques for Jt 

 Identify in-clique that contains I1 and out-clique that contains I2 

 Initialize clique potentials to 1s and only multiply time slice 2 nodes’ CPTs from 

a clique onto that clique’s potential 

Step 3: 

Message-

passing and 

Forward 

Advance 

 Perform standard forward-backward message-passing at current time step and 

junction tree 

 Marginalize the out-clique potential φ in the current junction tree down to the 

outgoing interface potential 

 Increase time step and initialize the new junction tree Jt+1 

 Multiply φ onto the in-clique potential of Jt+1 
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Figure S7. The junction tree of 2-TBN for curated network. 

 

 
The green-colored nodes represent cliques and yellow nodes denote separate sets of nodes 

between contiguous cliques in the junction tree. The tree on the left represents the 0.5-TBN 

junction tree for t=0 and the tree on the right shows the 1.5-TBN junction tree for 2TBN at t>0. 

The outgoing interface, which contains the outgoing nodes in 0.5-TBN at t=0, is colored in red. 

The incoming and outgoing cliques in 1.5-TBN at t>0 are represented by pink- and blue-colored 

nodes, respectively. Belief messages from t=0 to t=1 are transmitted from the outgoing clique in 

0.5-TBN (red) to the incoming clique in 1.5-TBN (blue). Belief messages for t>0 are passed 

through the outgoing clique (pink node) in the current 1.5-2TBN junction tree to the incoming 

clique (blue node) in the next time slice of the 1.5-TBN junction tree iteratively.  

1.2 Convert Knowledge to Constraints and Parameter Estimation 

 After we use the interface algorithm to convert a DBN into junction tree, we need to 

parameterize the DBN before we can perform inference. There are many reverse-engineering 

approaches to estimate the parameters of a DBN model from quantitative data. However, the 

applications of these approaches are limited by data scarcity and high-dimensionality in 

modeling biological networks. In this section, we employ a model(2) to convert qualitative 

knowledge encoded in the network topology to a set of constraints in the DBN parameter space. 

These constraints are then used to recover the parameter distribution of the DBN model. 

 

1.2.1 Preliminary 

 An edge in a DBN model encodes the conditional probability distribution (CPD) of a 

child node given a configuration of its parents. Each child node in the DBN model is associated 

with a CPD and all CPDs compile the vector of parameters in the DBN model which is denoted 

by θ. When we use the DBN model to represent a genetic network, each edge reflects a 

functional regulation, such as transcriptional regulation or protein-protein interaction. For 

example, assume a simple acyclic model with two nodes A and B. For the sake of simplicity, we 

restrict our discussion to binary-valued nodes. If the influence takes direction from A to B, A is 

the parent node and B is the child node. The CPD of B is the only parameter for the model, i.e. 
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θ={θB}. The CPD is a multinomial distribution and can be written in the form: θB ={P(B|A), 

P(B|  ), P(  |A), P(  |  )}. Once the values of θB are known, it is straightforward to infer B’s 

belief/probability given A’s status.  

 

Definition 1.2.1 θijk denotes the CPD entry of i-th node taking its k-th value given the j-th 

parents configuration:                     . 

 

1.2.2 Constraint-based Qualitative Knowledge Model 

 Throughout this paper, we assume our nodes are binary variables. Logic “1” and “0” 

values of a node are defined as “present” and “absent” or “active” and “inactive” or “maximal 

expressed” and “minimally expressed” as synonyms, A and   . Qualitative influences with 

directions can be defined based on the number of influences imposed from the parents on the 

child. There are three cases of influences(2), a single influence, a joint influence and a mixed 

joint influence. In addition, there are extra features added to these classes of influences(3). For 

the sake of clarity, we summarize these influences here. 

 

1. Single Influence 

Definition 1.2.2 If a child node B has a parent node A and the parent imposes an isolated 

influence on the child, qualitative influence between parent and child is referred as single 

influence. Single influence can be further classified into single positive influence and single 

negative influence. 

 

Definition 1.2.3 If presence of parent node A renders presence of child node B more likely, the 

parent node has a single positive influence on the child node. This can be represented by the 

inequality 

                                                     (2) 

Definition 1.2.4 If presence of parent node A renders presence of child node B less likely, the 

parent node has a single negative influence on the child node. This can be represented by the 

inequality 

                                              (3) 

 

2. Joint Influence 

Definition 1.2.5 If a child node B has more than one parent node and all parents influence the 

child in a joint way, these influences between parents and child is referred as joint influence. 

This joint influence can be either plain/independent, synergic (cooperative) or antagonistic 

(competitive) and the individual influences from the parents to the child can be either positive or 

negative. 

 

Definition 1.2.6 If a joint influence from two or more parent nodes generates combined 

influential effects larger than the single effect from each individual parent and individual effects 

are independent to each other, the joint influence is referred as plain joint influence or 

independent joint influence.  

 

Definition 1.2.7 If all individual influences from the parents to the child are positive, a plain 

joint is called positive plain joint or positive independent joint influence.  
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                                         (4) 

Definition 1.2.8 If all individual influences from the parents to the child are negative, a plain 

joint is called negative plain joint or negative independent joint influence.  

           
          

          
                                          (5) 

 

Definition 1.2.9 If joint influences from two or more parent nodes generate a combined 

influential effect larger than the sum of each single effect from individual parents, the joint 

influence is referred as cooperative joint influence  

Definition 1.2.10 If all individual influences from the parents to the child are positive, a 

cooperative influence is called positive cooperative joint influence. 

                                
         

         
               (6) 

Definition 1.2.11 If all individual influences from the parents to the child are negative, a 

cooperative influence is called negative cooperative joint influence. 

                                   
          

          
                  (7) 

 

3. Mixed Joint Influence 

Definition 1.2.12 If the joint effect on a child is formed by a mixture of positive and negative 

individual influences from its parents, the extraction of a probability model is not well defined in 

general. Hence, we adopt the following scheme: If there are mixed influences from several 

parent nodes to a child node, and no additional information is given, they are treated as 

independent and with equal influential strength. Assume that parent node A imposes positive 

single influence on child node C and parent node B imposes negative single influence on child 

node C, the joint influence can be represented by 

 

                                                                         
                 (8) 

 

4. Extra influential features 

Some extra features(3) are designed to further refine the above knowledge model and 

parameter distributions. These features define relative and absolute properties of the conditional 

probability distributions, which include: 1) the ratio; 2) the difference between any two or more 

probabilities; 3) the absolute boundary of any probability entry. 

  

Definition 1.2.13 These properties impose additional restrictions on the DBN model uncertainty 

so that a more accurate generalization can be achieved. They can be compactly encoded by a 

linear regression function           (c is a scalar) and      is defined by Def.1.2.1. In the case 

that node B imposes single influence on node A, there are two probabilistic configurations. The 

linear constraints can then be written as 

                                                                             (9) 

where R is influence ratio, ∆ is influence difference and Bd is the boundary.  

1.2.3 Parameter Constraints for Genetic Network 
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We use these constraints to characterize biological interactions in genetic networks. 

Roughly, biological interactions can be classified as: i) transcriptional regulations including 

activation and repression and ii) protein-protein regulatory interactions including protein 

complex formation, activation, and inhibition by post-translational modification. In DBN, these 

regulatory interactions are parameterized by one of the above constraints to confine the model 

uncertainty in the parameter space, i.e.    in             (Table S4). A genetic network often 

consists of a combination of interactions belonging to different classes in Table S4, which can be 

translated to a set of constraints accordingly.  

 

Table S4. Parameter constrains in DBN imposed by biological interactions 

Transcriptional activation 

 

Default:           Single Positive Influence (Def.1.2.3) 

               

 

Optional:            Extra features (Def.2.2.13) 

                   

                  ; 
P                  ; 

Transcriptional inhibition 

 

Default:           Single Negative Influence (Def.1.2.4) 

                 
 

Optional:            Extra features (Def.2.2.13) 

                     

                   ; 
                    ; 

Multiple Individual Trans-

activation 

 

Default:           Positive Plain/Independent Joint (Def.1.2.7) 

          
         

         
             

 

Optional:            Extra features (Def.2.2.13) 

          
               

               

                   

 

                    ; 
                        
                     ; 
                        

Multiple Individual Trans-

inhibition 

 
 

Default:           Negative Plain/Independence Joint (Def.1.2.8) 

           
          

          
              

 

Optional:            Extra features (Def.2.2.13) 
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                     ; 
                      ; 
                      ; 
                       ; 

Cooperative Trans-

activation 

 

Default:           Positive Synergy (Def.1.2.10) 

                                
         

         
 

            
 

Optional:            Extra features (Def.2.2.13) 

                                     

  
               

               

                   

 

                    ; 
                     ; 
                     ; 
                      . 

Cooperative Trans-

inhibition 

 

Default:           Negative Synergy (Def.1.2.11) 

                                   
          

          
 

             
 

Optional:            Extra features (Def.2.2.13) 

                                        

  
                

                

                    

 

                     ; 
                      ; 
                      ; 
                       . 

Mixed inputs 

 

Default:           Mixed Joint Influence (Def1.2.12) 

                                           
                                        ; 

 

Optional:            Extra features (Def.2.2.13) 

                           
                             
                            
                          ; 

 

                    ; 
                     ; 
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                     ; 
                      . 

Protein complex formation 

 

Default:           Positive Plain/Independent Joint (Def.1.2.7) 

           
          

          
              

 

Optional:            Extra features (Def.2.2.13) 

           
                

                

  

                   
 

                     ; 
                      ; 
                      ; 
                       . 

(AB= protein complex) 

Activation by post-

translational modification 

 

Default:           Positive Synergy (Def.1.2.10) 

                                
         

         
 

            
 

Optional:            Extra features (Def.2.2.13) 

                                     

  
               

               

                   

 

                    ; 
                     ; 
                     ; 
                      . 

Inhibition by post-

translational modification 

 

Default:           Negative Synergy (Def.1.2.11) 

                                   
          

          
 

             
 

Optional:            Extra features (Def.2.2.13) 

                                        

  
                

                

                    

 

                    ; 
                     ; 
                     ; 
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                      . 

 

 In this study of the hESC network, we use the default constraint in Table S4 to set 

parameter constraints for each local structure in the network. If not specified by qualitative 

knowledge, we heuristically set: R=1,  =0, αmin=0.9, αmax=1.0, βmin=0.0, and βmax=0.1 wherever 

these optional features apply. We do this to maintain consistency and generality across whole 

network. The selected boundary values reflect the observation of gene expression that is turned 

on or off by a positive or negative regulation. We set other parameters with default values, i.e. 

ρmin=0, γmin=0 and ρmax=1.0, γmax=1.0, except for protein complex, ρmin=0, γmin=0 and ρmax=0, 

γmax=0. A list of parameter constraints used for all local structures in hESC network is shown in 

Table S5. A specific configuration according to the qualitative knowledge was set for the 

complete inhibition of CGA and CGB by Oct4.  

 

Table S5. Qualitative Knowledge Constraints for Genetic Regulatory Network 

Child Node Parent Nodes Regulation 

Type
a
 

Constraint 

Type
b
 

ZNF206 NANOG 1 SP 

SALL4 LEF1,NANOG,SOX2 1,1,1 PPJ 

SOX2 NANOG,Oct4-Sox2 1,1 PPJ 

Oct4-Sox2 OCT4,SOX2 1,1 PPJ 

FOXO1A OCT4,SOX2,NANOG 1,1,1 PPJ 

ZIC3 SOX2,NANOG 1,1 PPJ 

PRDM14 OCT4,SOX2,NANOG 1,1,1 PPJ 

LEF1-bCat LEF1,bCAT 1,1 PPJ 

ZFP42 NANOG,OCT4 1,1 PPJ 

BMP2 SOX2,NANOG,BMP2K 0,0,1 MJ 

Myc-Max MYC,MAX 1,1 PPJ 

Mad-Max MAX,Mad 1,1 PPJ 

OCT4 NANOG,Oct4-Sox2,CDX2 1,1,0 MJ 

LEF1 NANOG,OCT4 0,0 NPJ 

FOXD3 NANOG,OCT4,SOX2,E2F4 1,1,1,1 PPJ 

OCT4-FOXD3 OCT4,FOXD3 1,1 PPJ 

SOX17 ZIC3,OCT4 0,0 NPJ 

FOXA2 FOXD3,OCT4-FOXD3,FOXA2,SOX17 1,0,1,1 MJ 

FOXA1 FOXD3,OCT4-FOXD3,FOXA1 1,0,1 MJ 

AFP FOXA1,FOXA2 1,1 PPJ 

CDX2 OCT4,NANOG,CDX2 0,0,1 MJ 

T NANOG,PRDM14,E2F4,OCT4 0,0,0,0 NPJ 

SUMO1 NANOG,E2F4 1,1 PPJ 
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PIAS1 E2F4,PIAS1 1,1 PPJ 

GATA4 OCT4,SUMO1,SOX2,NANOG,PIAS1 0,1,0,0,1 MJ 

GDF3 NANOG 1 SP 

TCF3 E2F4 1 SP 

KLF4 OCT4,SOX2,NANOG 1,1,1 PPJ 

CSH1 PRDM14 0 SN 

NANOG ZIC3,NANOG,Oct4-Sox2,PBX1,KLF4,GATA6 1,1,1,1,1,0 MJ 

LMCD1 NANOG,CAMP 1,0 MJ 

GATA6 PRDM14,NANOG,OCT4,LMCD1,GATA6 0,0,0,0,1 MJ 

MYC PRDM14,E2F4,LEF1-bCat,TCF3 1,1,1,0 MJ 

GATA2 SUMO1,PIASy,SOX2,NANOG 0,0,0,0 NPJ 

GATA3 NANOG 0 SN 

hCGa OCT4,GATA2,GATA3,CAMP 0,1,1,1 MJ 

hCGb OCT4,SP1,CAMP,SP3 0,1,1,1 MJ 

SP3 SUMO1,PIAS1 0,0 NPJ 

NFYA SOX2,E2F4 1,1 PPJ 

CEBP SP1,E2F4 0,0 NPJ 

TDGF1 OCT4,NANOG,SOX2 1,1,1 PPJ 

MYC-SP1 MYC,SP1 1,1 PPJ 

PIASy PIAS1 1 SP 

PBX1 NANOG 1 SP 

HNF4A GATA6,bCAT 1,1 PPJ 

BMP2K HNF4A 1 SP 

SP1 E2F4,SP1,SP3,CEBP,NFYA,MYC-SP1 1,1,0,1,1,0 MJ 
a
1=activation, 0=repression; 

b
SP=Single positive influence; SN=Single negative influence; 

PPJ=Positive plain joint influence; NPJ=Negative plain joint influence; MJ=Mixed joint 

influence.  

 

2 Novel Qualitative Knowledge-based (Dynamic) Bayesian Network (QK-DBN) Inference 

2.1 Qualitative Knowledge (QK)-based (Dynamic) Bayesian network Inference (QK-BN, 

QK-DBN) 

In this section, we formally derive our proposed method of constructing BN and DBN 

models by utilizing only qualitative knowledge and of making quantitative probabilistic 

inference. We start our method development by introduction a conventional probabilistic 

inference problem in the BN and the DBN models. The quantitative training data is denoted by D 

and the qualitative knowledge is represented by Ω. In the full Bayesian approach, we consider 

the model’s uncertainty in probabilistic inference. In general, we can perform probabilistic 

inference by model averaging: given evidence E, qualitative knowledge Ω and quantitative 

observation D, the (averaged) conditional distribution of the remaining variable X is calculated 

by integrating over the models: 

                                                 (10) 
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where P(D|m) is the likelihood of the model and P(m|Ω) represents the model’s prior probability 

given the qualitative knowledge. 

 

In QK-BN and QK-DBN, we consider the extreme case of no available quantitative data, 

i.e. D=null. It is still possible to make Bayesian probabilistic inference of Eq. 10 based on the 

knowledge Ω alone and the evidence E. 

                                                             (11) 

 

Each BN or DBN model m is determined by its structure and parameter vector. The 

Bayesian model space (all possible BN/DBN models) is thus defined by 1) a set of model 

structures S={sk, k=1,…,K}; 2) for each structure sk, a continuous ensemble of conditional 

probability table (CPT) configurations    . The BN/DBN model space can be written as M={(sk, 

   ),k=1,…,K}. For every structure sk, each possible parameterization in the CPT configuration 

ensemble       defines a member BN/DBN i.e. m={(sk,θ)|k=1,…,K} and the distribution of a 

single BN/DBN model is normalized against all models as 

                 
                 

    
  

                 
 

    

      (12) 

where                         
 

 
    

  is the normalization scalar.  

 

Since a BN/DBN model m is uniquely determined by its structure s and parameter vector 

θ, the BN/DBN model prior probability in Eq.11 can be extended as an integration over the 

structure space and the structure-dependent parameter space: 

                     
        

 
                                          

                            
 

 
   

         

 
   

                                      
 

 
   

                

 
      (13) 

 

As we can see from Eq. 13, in order to determine P(m|Ω), we need to reconstruct the 

model structure prior probability         from the qualitative knowledge Ω and the model 

parameter prior probability           given the structure and qualitative knowledge. Without 

any qualitative information or observation dataset, the (Dynamic) Bayesian network models are 

uniformly distributed in the model space, i.e. every structure in the (discrete) structure space and 

every parameter vector configuration in the continuous parameter space are equally probable. It 

is reasonable to assume that the qualitative knowledge, Ω, regarding the network structure is 

consistent and certain, i.e. expert is fully certain about the dependence and direction of the 

influential relationships between two variables. Then the probability distribution of the model 

structure P(sk|Ω) is a Dirac delta function peaked at a specified structure sk.  

                                          (14) 

 

Given the k-th model structure, the qualitative information in Ω usually does not contain 

any numerical specification on the parameter configurations since it would otherwise require 

precise quantitative information on the conditional probability distributions. Instead, the 

qualitative constraints define a set of possible parameter configurations    . Thusly, the 
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conditional probability of each parameter vector θ given the k-th structure and qualitative 

constraints           is equal to the probability of this vector belonging to the set of possible 

parameter configurations     defined by the constraints in Ω. 

                                     (15) 

 

This conditional probability in Eq. 15 is uniformly distributed for those parameter vectors 

within the constrained set     (constrained parameter space), and this probability is equal to zero 

for those falling outside the constrained parameter space. Namely, given the qualitative 

knowledge and constraints in Ω and k-th model structure, we take every parameter configuration 

consistent with the constraints equally in performing the probabilistic inference in Eq. 13. 

                
                

              

             (16) 

 

Note that it is also possible to use non-parametric Bayesian analysis(7, 8) in combination 

with qualitative constraints to assign any probability distribution to the conditional probability 

distribution of a model’s structure and parameters in Eq. 14 and Eq. 16, respectively . In this 

paper, we use the uniform distribution to specify the BN/DBN model structure and parameters’ 

conditional probability distributions in Eq. 14 and Eq. 16, respectively. It is straightforward to 

show that the normalization factor   in Eq. 12 and Eq. 13 is equal to the size of the constrained 

parameter space       . 

           
                                 

  
             (17) 

 

Combining Eq. 12, 14, 16 and 17, the conditional probability of a BN model given 

qualitative knowledge is equal to 

                 
                    

       
  

                             

                                

      (18) 

Eq. 18 means that the models are equally distributed if their structures are consistent with the 

qualitative information and their parameters fall within the constrained parameter space    .  

                  
 

       
                          

 

 

   

 

     
 

       
                          

 
 

    
 

 
           

                          
           (19) 

 

 It is worth noting that, as long as simple inequality constraints are considered as the body 

of the qualitative knowledge Ω, the problem remains analytically tractable even in higher 

dimensions. In general, however, integration during Bayesian inference (in Eq. 13) can become 

intractable by analytical methods.  In this case, we employ efficient sampling methods, such as 

MCMC, to compute the empirical value of the inference in Eq. 19. 

 

2.2 Efficient Monte Carlo Markov Chain 

If the local structures of a BN/DBN model (consistent with the prior knowledge) are 

relatively simple, i.e. the maximum number of parents for all variables in the network are 
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bounded, then all the local parameters of this model, i.e. θ={θ1,θ2,θ3,…,θN} are low dimensional. 

In this case, the intractable integration in Eq. 19 can be approximated by Monte Carlo integration 

with random sampling within the constraints. Thus, the overall Bayesian probabilistic inference 

in Eq. 10 can be solved as 

                                                                                   (20) 

                                          
 

        
          

        

    

                                          
 

 
            

                                  

If the local structures of a valid model are complex, e.g. the maximum number of parents 

for all variables in the network are unbounded, some (if not all) of the local parameters of this 

model are high dimensional and the parameter constraints may become more restricted for 

random sampling in Monte Carlo integration. To efficiently generate samples satisfying the 

constraints, we exploit a rejection sampling method. The idea is to generate more samples from 

the current “unexplored” region so that the entire parameter space can be explored evenly. First, 

we generate samples from the proposed distribution and then reject the samples inconsistent with 

constraints. The second step is to enhance sampling in the under-sampled space.  

 

Specifically, we define a proposed distribution of the l-th model sample m
l
 conditioned 

on the previous samples: P(m
l
|m

l−1
, ...,m

1
). The more different m

l
 is from m

1 
to m

l−1
, the higher 

the probability. We define  

                 
 

                                                          (21) 

where a kernel density function of Gaussian 

                              
 

   
 

 

      
 
 

   
         

          

       (22) 

where N is the dimension of the model sample (i.e. number of model parameters, 

θ={θ1,θ2,θ3,…,θN}) and   represents the standard deviation.                 has high 

probability in the region close to previous samples.             is the largest possible value of 

               . 

 

Now we address the problem of how to generate a new sample     according to this 

proposed distribution. Our rejection sampling strategy is as follows: 1) We first randomly 

generate a sample m
l
 satisfying the constraints; 2) If l = 1, this sample is always accepted, 

otherwise this sample is accepted with the probability                . This can be easily 

implemented as a subroutine: i) Generate a number u from the uniform distribution over [0, 1]; 

ii) if u <                , m
l
 is accepted; otherwise, it is rejected; 3) If m

l
 is rejected, go back 

to Step 1) to generate another sample. Otherwise add the new sample to the sample set m
l C; 4) 

If the size of the samples |C| is smaller than L, then go back to Step 1). We can see that this 

algorithm includes two rejection steps. Each sample is first tested by the proposed distribution to 

make it far from previous samples. Then the sample is checked to make sure it satisfies the 

constraints. Finally, we can get a concise sample set to represent the constraints. 

 

2.3 Probabilistic Inference in Dynamic Bayesian Network 

We can generate a sequence of BN/DBN model samples by either simple Monte Carlo 

integration or more efficient MCMC algorithm presented above depending on the dimensionality 

of the local structure. All the accepted BN/DBN models follow the probability        in Eq. 
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18. In order to compute the final inference in Eq.19, we need to perform probabilistic inference 

in each accepted model and calculate their average. Junction Tree (JT) algorithm is usually used 

to perform belief propagation on static Bayesian networks. For inference in DBN, the naïve 

approach is to “unroll” the DBN for the desired number of time slices and then perform junction 

tree inference on the extended model as if it were a static Bayesian network. However, this will 

be too time-consuming or memory-intensive, particularly in an application with a large junction 

tree. The interface algorithm uses static junction trees as a subroutine to compute the exact 

inference in the two-slice temporal Bayesian network (2TBN) and it repeats this inference 

sequentially over time. In this paper, we utilize the standard interface algorithm(1) to calculate 

the marginal and joint probability of these nodes in the network under some evidential 

observation E, i.e.           (see section 1.1.3).   

 

2.4 Belief propagation and Message-passing 

 After we have constructed the junction tree from the original DBN model, such as Fig. 

S7, we can perform the standard message-passing algorithm(9) in the junction tree to infer both 

the joint probability over all variables and the marginal probability of each variable in the 

network. After message-passing converges and the junction tree becomes a consistent tree(9), we 

can calculate the joint probability over all variables    in the junction tree as 

      
     

     
                        (23) 

where    
 and    

 represent the cluster and sepset potentials respectively. The marginal 

probability of a variable X can be calculated by  

                                                          (24) 

i.e. we can pick any cluster U or sepset S  which contains the variable X and integrate out its 

potential function against other variables in this cluster or sepset. 

  

3. Apply QK-DBN to the curated genetic network 

 As discussed above, compared to the conventional reverse-engineering approach, this 

approach does not require a large amount of functional data, which is very limited in hESCs, to 

train the model. It translates qualitative information curated from the literature of transcriptional 

regulation and protein-protein interaction into prior distributions of the model’s structure and 

parameters. We then sample all possible models that are consistent with our knowledge by 

MCMC and use model averaging to infer the final marginal or joint probability. Thusly, our 

method avoids the possible biased estimation and local maximum when learning from scarce 

data using the conventional reverse-engineering methods. 

 

 In this section, we apply the knowledge-based Dynamic Bayesian network (QK-DBN) 

method to model the curated genetic network in hESCs. We show here how to use this method to 

i) predict gene expression level changes upon perturbations; ii) calculate the full energy 

landscape of cellular states; iii) search for recipes to generate iPSCs and evaluate their 

reprogramming efficiency; iv) explore reprogramming pathways for cell state transition.  

 

3.1 Gene Expression Changes Prediction in Human ES Cells 

 The nodes in the constructed genetic network are denoted by G={g1, g2,…,gN}, 

representing the gene expression levels. As discussed before, we assume the nodes in the DBN 

model are binary nodes which take value of 0 or 1. Value “0” means that this gene is minimally 
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expressed and “1” means is maximally expressed. The probability of a gene being max-/min-

expressed (under condition E) is a continuous value in the range of [0,1]. When a gene is max-

expressed, the probability of its node being “1” is 1, i.e. P(gi=1|E)=1. When a gene is min-

expressed, the probability of its node being “1” is 0, i.e. P(gi=1)=0. Therefore, we consider this 

probability positively proportional to the expression level. The higher the probability of gi=1 is, 

the higher the gene’s expression level is.  

 

Definition 3.1 Let gi,max and gi,min represent the maximum and minimum expression level of the 

i-th gene gi, respectively. gi|E is the expression level of gi under condition E and    is gi 

expression range. The (marginal) probability/belief of gi being max-/min-expressed is a random 

value in [0,1] which is linearly proportional to the expression level (intensity) of this node: 

                   
               

                 
        

               

    
 

            

               
     

               

                 
    

     
               

    
 

(25) 

Ki and Ki’ are unknown or hidden biology-dependent factors for gi which may affect the 

proportionality in Eq. 25. 

  

 We can further simplify the above equation by rescaling the minimum expression level of 

gi to 0 and the expression range to [0, gi,max|E]. In this case, the probabilities can be simplified as: 

                  
    

        
 

                               
     

             

         
    (26) 

Note that the probabilities in the above definitions must satisfy the sum-to-one constraint, i.e. 

                          (27) 

Since gi,max|E and gi,min|E are usually unknown quantities, we cannot directly calculate the 

absolute expression level under a given conditiongi|E. However, it is possible to evaluate the 

expression level fold-change of a gene across two conditions by comparing the (marginal) 

probabilities of the gene being max-expressed (or min-expressed) in these conditions. The gene 

expression ratios between two conditions can be directly evaluated as: 

                 
     

     
      (28) 

The gene expression level (intensity) under different conditions       and       can be 

experimentally measured to evaluate the predicted values calculated by the ratio of      
       and            .  

 

 The probability ratios between two conditions (Eq. 26) can be expanded as 

                   
          

          
 

     

     
 

         

         
 

     

     
 

 
    

    
                     (29) 
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where     =
     

         
 and     =

     

         
 are unknown scalars. In Eq. 29, we can see that the ratio 

between the probabilities is linearly proportional to the ratio between the gene expression levels. 

E1 and E2 are two experimental conditions, such as a control and a knockdown experiment, 

which are modeled as evidence in DBN. The probabilities can be calculated by Eq. 20. In the 

case of a knockdown experiment, the evidence in E2 is represented by clamping specific node(s) 

(e.g. knocked down genes) to specific expression level(s). Therefore, we can predict the ratios of 

the gene expressions between knockdown and control experiments by calculating the ratios 

between the marginal probabilities of this gene under these conditions.  

 

3.2 Energy landscape in the cell state space 

 In addition to predicting gene expression changes, we can also calculate the full 

landscape of cell states. In this study, we assume that cell states can be uniquely defined by the 

expression levels of all genes in the genetic network. We can calculate the potential energy of 

each state as 

                               (30) 

where P(Si) is the probability of i-th state of the network and Ui is the potential energy of this 

state. A collection of the potential energy values of all states in this network can be represented 

as: 

                                (31) 

where M=2
N
 and N is the number of genes in the constructed network. We can calculate all 

potential energy values in    from the converged junction tree via Eq. 23, 24 and 30.  

 

 To compute the landscape of the genetic network, we need to consider the potentials 

under all possible (at least most representative) conditions. For our purpose of studying iPSC 

generation and the differentiation of the hESC, we choose to mimic the most representative 

scenarios during iPSC generation by varying the expression levels of the three master regulators 

OCT4, SOX2 and NANOG in hESCs from 0 to 1 with a small interval of 0.2. In DBN inference, 

for each combination of the levels of these regulators, we clamp their probabilities accordingly 

and simulate      (Energy under j-th condition). Lastly, we calculate and normalize       for all 

possible j, and then sum them to get the full landscape.   

 

3.3 Searching for recipes to generate iPSC  

 We want to perform an exhaustive search for reprogramming recipes. As discussed in 

section 3.1, the predicted (marginal) probability/belief of gi being max-/min-expressed is linearly 

proportional to the relative gene expression level (see Eq.29). We use E1 to denote the hESC 

state. Since the three master hESC regulators OCT4, SOX2 and NANOG are max-expressed in 

hESC, without losing generality, we clamp their marginal probability to 1 in our simulation. 

Then, by QK-DBN inference, we can calculate the marginal probabilities of all the genes in the 

network in the hESC and these probabilities form a vector of probabilities: 

                                                 (32) 

 

 Similarly, we use E2 to represent the perturbation conditions specified by an iPS recipe. 

To search for iPS recipes in our simulation, starting from the differentiation states (OCT4, SOX2 

and NANOG initialized to 0), we evolve the DBN given a specific reprogramming perturbation. 

Consequently, by QK-DBN, for each reprogramming recipe E2, we can calculate the marginal 
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probabilities for all the genes in the network given this perturbation. These marginal probabilities 

under E2 also form a vector 

                                                     (33) 

 

Based on Eq. 29, since these marginal probabilities should reflect their gene expression levels, 

we can directly evaluate a recipe by comparing vectors      and         . We employ root-mean-

square distance (RMSD), Pearson correlation, and Spearman correlation to evaluate the distance 

from          to      .  

 

3.4 Depicting pathways of iPSC generation  

 Lastly, we explore the cell state transition pathways during reprogramming. As 

mentioned above, the cell state is defined by the expression levels of all the genes in the network. 

By DBN definition in section 2.1, 

 

             
       

         
                              

 
        (34) 

 

where     and       denotes the expression levels of all genes at time t and t-1 respectively. We 

formulate the probability propagation in DBN for cell states as  

 

                            
           (35) 

 

where St=     and St-1=       denote the cell state at time t and time (t-1). The probability of the 

current cell state is equal to the integration of the product of state transition probability 

(          ) and the cell state probability at the last time step (       ). To simplify the 

computation, we apply maximum-a-posterior (MAP) estimation to predict the state-transition 

pathway. Namely, at each time step t, we pick the state which maximizes the cell state posterior 

at the current time step as the current cell state, i.e. 

 

               
                                                  (36) 

Note that the estimated pathway by MAP is not necessarily global maximum. 
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