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RA Dynamics 

Under some conditions on W  and A , one can obtain the desired attractor in the network given 

by Eq. ( 2 ) by properly choosing I. The proof of the following theorem can be found in [1] and 

[2]. 

Theorem 1. Let 2)( TWWH  . If AH   is negative definite then the network given by Eq. ( 

2 ) has a unique globally asymptotically stable equilibrium point.  

Note that we take )(adiagA   to be a diagonal matrix with all the diagonal elements equal to a 

positive real number a . Entries of W  are chosen randomly in  1,1  with the restriction of 

AH    being negative definite. Now let’s assume *x  is the desired state for which the entries 

are either 1 or 1 . It is not hard to check that if one chooses I  to be )()( ** xWxcI    where 

)1tanh()1tanh(  aac , the vector *x  becomes an equilibrium point of the network, Eq. ( 

2 ). In this way, we can choose the proper kI  vector for the kth HVC ensemble to create the 

desired attractor in the RA level. 

 

Mixtures of RA-modulated Oscillators at the First Level 

Here, we describe how to obtain the hidden states 
)1(

ix , 
)1(

iy
 
and the outputs )1(v , )1(w . Note that, 

to drive the vocal model appropriately, we produce two outputs (the second output is simply a 

time-shifted copy of the first one), which are used in producing the air sac pressure p(t) and the 

stiffness of the labia k(t). We introduce the following equations, where we use superscripts to 

denote the vectors at the i th level: 
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where 1)1()1( ,  nyx  are the hidden states of the first level, 1)1()1( ,  nwv  are the output 

vectors, 
1)(  n

iff  is the vector of angular frequencies, 
1  is a scalar, 

)1(

j  are normally 

distributed noise vectors and in the remaining variables, subscripts denote the i th entry of the 

corresponding vector. The term 2

1)(1 if  acts as a normalizing constant for the solutions. 

Assuming that the RA output 
)2(

iv  is constant (by construction RA dynamics are typically close 

to 0 or 1 except for the transition times), the analytic solution of the first two equations above are 

t
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   where i ’s are the 

phase-shifts given by )arctan( 1 ii f . The constants ic  and id  depend on the initial 

conditions. This means that states, regardless of initial conditions, are quickly attracted to the 

desired sine functions since the term te  diminishes the effect of the initial conditions quickly. 

Note that this implies that 
)1(

iy  is just a shifted copy of 
)1(

ix  by 1 . The output vectors )1(v  

and )1(w  are a linear combination of solutions 
)1(

ix  and 
)1(

iy  where the amplitudes of these 

solutions depend on the output of the second level (
)2(

iw ). Note that the amplitude of a sine 

wave, i.e. its contribution to the final output, is effectively zero while the corresponding RA 

ensemble in the second level is inactive (i.e., 0
)2(
iv ). In this way, if an RA neuron is active at 

the second level, the corresponding sine function contributes to the final output.  

 

Sensitivity Analysis 

Here, we investigate the effects of choosing different connectivity matrices at the third and 

second levels of the generative and recognition models. In the “Ideal Communication” 

simulation, we have used: 
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(Here 11i  when Ni  and Ni 1 when 1i ) to create the HVC dynamics and used the 

same connectivity matrix for the recognition as well. Similar dynamics can also be obtained if 

the entries 1.5 and 0.5 in the above connectivity matrix are changed. In the simulation shown in 

Figure S4, we used 1.8 and 0.2, respectively, for these entries in both generation and recognition. 

Similarly, the dynamic behavior of the model is also robust to the changes at the second level. 

The connectivity matrix W at this level which satisfies the condition in Theorem 1 can be chosen 

arbitrarily as the following matrix: 
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0.5809-   0.4636-   0.4713-   0.2407-   0.9154-   

0.1209-   0.2264-   0.6501-   0.5817    0.8933-   

0.9779    0.7162    0.6591-   0.0325-   0.5896    

0.5850-   0.8218-   0.4338    0.0437-   0.5654    

0.5732    0.9744    0.2995-   0.6390-   0.7634-   

1W   

1W  is used during all the simulations in the manuscript (for both generation and recognition) 

except the ‘Differently Wired Brains” simulation where a different matrix is used for the 

recognition. To show that the obtained dynamics do not change, we also changed this 

connectivity matrix with another arbitrary matrix that satisfies the condition of Theorem 1: 
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0.5053-   0.9574    0.9282-   0.5107-   0.4141-   

0.7595-   0.1480-   0.2294-   0.1723-   0.2917-   

0.7585    0.9685    0.8081-    0.6341    0.8152    

0.3601    0.7111    0.8011-   0.8299-   0.8703    

0.2149    0.5558-   0.8415-   0.8345    0.9325-   

2W   

As can be seen from Figure S4, the same dynamics can still be obtained with this matrix and 

both the generation and recognition models are robust to changes in connectivity matrices. 
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