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Interlab experimental consistency

To ensure the robustness of the results we report, we pegfbtemperature stress experiments in parallel at two
laboratories: the Morimoto Lab at Northwestern Universtyd the Ruvinsky Lab at the University of Chicago.
Having established the calibration of temperature betwleetwo sites, we investigated whether there were obseaxvabl
differences between the data collected at the Morimoto IPahd Ruvinsky (Set 2) labs. To this end, we compared
distributions of brood sizes, holding temperature and tooestant. Any differences in the distributions must be
accounted for by variation due to (a) differences across s{b) differences across experimental preparations,)or (

statistical fluctuations.

We compared the data from every pair of time- and temperataiehed samples by performing a permutation test
[1]. Permutation tests are a form of bootstrapping used topare sets of data when distributional assumptions of
parametric tests are violated (see Materials and Methdds)ugh we will show below that the distribution of brood
sizes over long times is normal (and therefore amenable tudeSt'st test), this assumption is violated for time

points early in the animals’ reproductive life.

One can compute a Kolmogorov-Smirnov (KS) test statigtfor pair : of samples [2]. Because we make no dis-
tributional assumptions about the samples, we use resagnigitest the null hypothesis thdtis not significantly
larger than one one would expect by sampling the pooled ssmphdomly. This yields a measyreeflecting the
probability that this null hypothesis is true. Low valuespoindicate support for rejecting the null hypothesis—an

argument that the distributions are indeed different.

Because there are many pairs of samples, this constitutedt@latesting problem [3, 4]. If the data are consistent
with the null hypothesis, all values pfare equally likely. Indeed, one expects that the distrdrutif the ensemble of

p-values{p} are uniformly distributed. This is clearly not the case (F®S1), suggesting that time- and temperature-
matched samples are more different than would be explaipetiénce alone. However, this may be due partially to

differences across experimental preparations. To isti&teariation due to inter-site differences, we computed th
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KS test statistic for the distribution i} for the inter-site paired samples. Using the same hypdtltesiing scheme
outlined above (Using the ensemble of gll} for sampling), we could not garner enough evidence to refechull
hypothesis (Figure S1, inset,= 0.11 + 0.01). These data are consistent with the hypothesis that therelifces in

samples between sites are no larger than the differencemwites.

Evaluation of model assumptions

To confirm our assumption that the number of eggs laid by hphmalite worms is described by a Gaussian dis-
tribution, we tested the normality of the data generatedxpeements performed in the Morimoto and Ruvinsky
laboratories. For each experiment, we applied the Kolmog@mirnov (KS) test to the data collected at each time
point greater or equal to 72 hours for’ZDanimals. This threshold time point is arbitrary, but sugfitly large to

minimize any skewness due to counting statistics.

Using Monte Carlo hypothesis testing, the KS-statisticlmaassociated with a p-value for rejecting the null hypaghes
that a distribution is Gaussian. Because we applied thisa&8 distributions, this presents a multiple testing jpeoh
The p-value in this case also specifies a false-positive satéor a threshold of rejection at= 0.05, treating these
distributions as independent tests will cause us to inctiyreeject 5% of the null hypotheses, even if they all are
consistent. To approach this problem we test the hypothesishe p-values calculated from the KS-statistics foheac
of the data distributions themselves are distributed umifp from 0 to 1 (Figure S3). Using Monte Carlo hypothesis
testing, we cannot reject the hypothesis that this disiobus consistent with a uniform distributiop & 0.43+0.01).

This supports our assumption that the number of eggs laidrimally distributed.

Model simplification

In the text, we argued that some aspects of the model showigime=3 (Equation 4) can be simplified without loss of

descriptive power. From Equations 1 and 2, expressionsiéofitixesF; andFy can be written,

F? kg — ksO (S1)

F° = k'OS,. (S2)

o
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Following from Figure 3B, the balance describing the tinte &f change of number of oocytes is,

dO
= Fy - F. (S3)

When oocyte development is sufficiently fast compared torditgam processes [5], oocyte development can be taken
to be inpseudo-steady-state. That is, at the time scale we are interestediifi,~ 0. This approximation allows us to

write an expression for the steady-state valye

0 = F2—F?
= k,— kO —k:OS, (S4)
kg
. — S5
© ks + k3 Sa (59)

Whenk, andk, are relatively largeX; > k}S,), the number of oocyte® depends weakly o, and is essentially

constant. Equation S2 thereby can be approximated as,

o * k(]
F o~ ke, S (S6)
= koS, (S7)

yielding Equation 3, where the constdnt = kk,/ (ks + kXS.) = kik,/ks is treated as a constant and as a free

parameter in our model.

Derivation of gamete dynamics

Our model involves a number of coupled differential equagithat describe the dynamics of various components of
the system. It is possible to solve these equations eXpliai described below. However, in practice, it is also ulsef

to evaluate them numerically.

The time-evolution of the numbeéi, of active sperm can be expressed as

—fmaz _ [ Sa
dja = max ! . (S8)
t —kpSa — kaSa
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The number of active sperm is non-increasing over theitifetof the animal. As such, late in the reproductive lifetime

k™t > k.S, and there exists a timeat whichk™** = k,S,. Therefore, Eq. S8 can be expressed,

—kmer — k.S, ift <7, else

434 = . (S9)

dt
—koSa — kqSq

The evolutionS, (t) for both of these cases is directly solvable, yielding,
ke (k’"” + 50) ekt ift < 7, else
kq kq a !
Sa(t) = , (S10)

Kmer e(ko+kd)(r—t)

whereS? is the number of sperm presenttat 0. At t = 7, the two cases in Eq. S10 are equivalent, allowing us to
solve explicitly for the value of,

1 fmax koka
L e [(F g0 Koka | si1
. og[< . -+s;) kmm%ko+_h”} (s11)

The differential equation describing the evolution of thenberO of fertilized oocytes follows similar conditions as

the system transitions between oocyte-limited and spémiteld states,

dO; Emer if t < T, else

— (S12)

koSa

Whent < 7 the dynamics are trivial@;(t) = £™*"t); however, the time-evolution after= 7 is dependent on the

number of sperm, which complicates the derivation.

0;(t) +C ko/dtSa(t)

- m/ﬁﬂ;l%meﬂ

_ kmam/dte—(ko+kd)(r—t)

kmaz
= _— e(

_ kotka)(T—t) S13
— , (513)
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whereC' is a constant of integration. At= 7, the two cases in Eq. S12 are equivalent. As saitit = 7) = k™.

kmam

max _ (ko+ka)(T—T7)
kMY 4+ C T kde
kma:lf
kma:lf O — _
T feo + ka
kma:lf
C = ke (S14)

Together, these equations describe the time-evolutiomebbservablé€),

kmart if t <7, else
]ngJrkd 4 fmazp _ kkoJrkd e(kDJrkd)(Tft)

wherer is defined in Eq. S11.
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