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Interlab experimental consistency

To ensure the robustness of the results we report, we performed temperature stress experiments in parallel at two

laboratories: the Morimoto Lab at Northwestern Universityand the Ruvinsky Lab at the University of Chicago.

Having established the calibration of temperature betweenthe two sites, we investigated whether there were observable

differences between the data collected at the Morimoto (Set1) and Ruvinsky (Set 2) labs. To this end, we compared

distributions of brood sizes, holding temperature and timeconstant. Any differences in the distributions must be

accounted for by variation due to (a) differences across sites, (b) differences across experimental preparations, or (c)

statistical fluctuations.

We compared the data from every pair of time- and temperature-matched samples by performing a permutation test

[1]. Permutation tests are a form of bootstrapping used to compare sets of data when distributional assumptions of

parametric tests are violated (see Materials and Methods).Though we will show below that the distribution of brood

sizes over long times is normal (and therefore amenable to a Student’st test), this assumption is violated for time

points early in the animals’ reproductive life.

One can compute a Kolmogorov-Smirnov (KS) test statisticd for pair i of samples [2]. Because we make no dis-

tributional assumptions about the samples, we use resampling to test the null hypothesis thatd is not significantly

larger than one one would expect by sampling the pooled samples randomly. This yields a measurep reflecting the

probability that this null hypothesis is true. Low values ofp indicate support for rejecting the null hypothesis—an

argument that the distributions are indeed different.

Because there are many pairs of samples, this constitutes a multiple testing problem [3, 4]. If the data are consistent

with the null hypothesis, all values ofp are equally likely. Indeed, one expects that the distribution of the ensemble of

p-values{p} are uniformly distributed. This is clearly not the case (Figure S1), suggesting that time- and temperature-

matched samples are more different than would be explained by chance alone. However, this may be due partially to

differences across experimental preparations. To isolatethe variation due to inter-site differences, we computed the
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KS test statistic for the distribution of{p} for the inter-site paired samples. Using the same hypothesis testing scheme

outlined above (Using the ensemble of all{p} for sampling), we could not garner enough evidence to rejectthe null

hypothesis (Figure S1, inset,p = 0.11 ± 0.01). These data are consistent with the hypothesis that the differences in

samples between sites are no larger than the differences within sites.

Evaluation of model assumptions

To confirm our assumption that the number of eggs laid by hermaphrodite worms is described by a Gaussian dis-

tribution, we tested the normality of the data generated by experiments performed in the Morimoto and Ruvinsky

laboratories. For each experiment, we applied the Kolmogorov-Smirnov (KS) test to the data collected at each time

point greater or equal to 72 hours for 20◦C animals. This threshold time point is arbitrary, but sufficiently large to

minimize any skewness due to counting statistics.

Using Monte Carlo hypothesis testing, the KS-statistic canbe associated with a p-value for rejecting the null hypothesis

that a distribution is Gaussian. Because we applied this test to 38 distributions, this presents a multiple testing problem.

The p-value in this case also specifies a false-positive rate, so for a threshold of rejection atp = 0.05, treating these

distributions as independent tests will cause us to incorrectly reject 5% of the null hypotheses, even if they all are

consistent. To approach this problem we test the hypothesisthat the p-values calculated from the KS-statistics for each

of the data distributions themselves are distributed uniformly from 0 to 1 (Figure S3). Using Monte Carlo hypothesis

testing, we cannot reject the hypothesis that this distribution is consistent with a uniform distribution (p = 0.43±0.01).

This supports our assumption that the number of eggs laid is normally distributed.

Model simplification

In the text, we argued that some aspects of the model shown in Figure 3 (Equation 4) can be simplified without loss of

descriptive power. From Equations 1 and 2, expressions for the fluxesF o
g andF o

o can be written,

F o
g = kg − ksO (S1)

F o
o = k∗oOSa . (S2)
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Following from Figure 3B, the balance describing the time rate of change of number of oocytes is,

dO

dt
= F o

g − F o
o . (S3)

When oocyte development is sufficiently fast compared to downstream processes [5], oocyte development can be taken

to be inpseudo-steady-state. That is, at the time scale we are interested in,F o
g ≈ 0. This approximation allows us to

write an expression for the steady-state valueO,

0 = F o
g − F o

o

= kg − ksO − k∗oOSa (S4)

O =
kg

ks + k∗oSa

. (S5)

Whenks andkg are relatively large (ks ≫ k∗oSa), the number of oocytesO depends weakly onSa, and is essentially

constant. Equation S2 thereby can be approximated as,

F o
o ≈ k∗o

kg
ks + k∗oSa

Sa (S6)

= koSa , (S7)

yielding Equation 3, where the constantko = k∗okg/ (ks + k∗oSa) ≈ k∗okg/ks is treated as a constant and as a free

parameter in our model.

Derivation of gamete dynamics

Our model involves a number of coupled differential equations that describe the dynamics of various components of

the system. It is possible to solve these equations explicitly, as described below. However, in practice, it is also useful

to evaluate them numerically.

The time-evolution of the numberSa of active sperm can be expressed as

dSa

dt
= max











−kmax − kdSa

−koSa − kdSa











. (S8)

S3



The number of active sperm is non-increasing over the lifetime of the animal. As such, late in the reproductive lifetime

kmax > koSa, and there exists a timeτ at whichkmax = koSa. Therefore, Eq. S8 can be expressed,

dSa

dt
=















−kmax − kdSa if t < τ , else

−koSa − kdSa

. (S9)

The evolutionSa(t) for both of these cases is directly solvable, yielding,

Sa(t) =















−kmax

kd

+
(

kmax

kd

+ S0
a

)

e−kdt if t < τ , else

kmax

ko
e(ko+kd)(τ−t)

, (S10)

whereS0
a is the number of sperm present att = 0. At t = τ , the two cases in Eq. S10 are equivalent, allowing us to

solve explicitly for the value ofτ ,

τ =
1

kd
log

[(

kmax

kd
+ S0

a

)

kokd
kmax(ko + kd)

]

. (S11)

The differential equation describing the evolution of the numberOf of fertilized oocytes follows similar conditions as

the system transitions between oocyte-limited and sperm-limited states,

dOf

dt
=















kmax if t < τ , else

koSa

. (S12)

Whent < τ the dynamics are trivial (Of (t) = kmaxt); however, the time-evolution aftert = τ is dependent on the

number of sperm, which complicates the derivation.

Of (t) + C = ko

∫

dt Sa(t)

= ko

∫

dt
kmax

ko
e(ko+kd)(τ−t)

= kmax

∫

dt e−(ko+kd)(τ−t)

= −
kmax

ko + kd
e(ko+kd)(τ−t) , (S13)
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whereC is a constant of integration. Att = τ , the two cases in Eq. S12 are equivalent. As such,Of (t = τ) = kmaxτ .

kmaxτ + C = −
kmax

ko + kd
e(ko+kd)(τ−τ)

kmaxτ + C = −
kmax

ko + kd

C = −
kmax

ko + kd
− kmaxτ . (S14)

Together, these equations describe the time-evolution of the observableOf ,

Of (t) =















kmaxt if t < τ , else

kmax

ko+kd

+ kmaxτ − kmax

ko+kd

e(ko+kd)(τ−t)

, (S15)

whereτ is defined in Eq. S11.
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