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Supporting information for “Maximization of learning speed in
the motor cortex due to neuronal redundancy”

Recurrent connections

The motor cortex contains recurrent connections [1], so we needed to confirm that neuronal redundancy
maximizes learning speed even when a neural network model includes adaptable recurrent connections.
In this case, neural activities are determined by

At
k(t) = (I − U t)−1W ttk(t), (1)

where U t ∈ RN×N represents the recurrent connections in the tth trial. Equation (1) is derived from
the stationary solution of the equation At

k(t) = U tAt
k(t) + W ttk(t). U is also learned to minimize the

squared error as follows:

U t+1 = U t + BM (I − U t)−1(I − U t)−1ZT ettT
k(t)(W

t)T , (2)

where BM is learning rate.
We numerically calculated learning speed, and figure S1A shows the learning speeds obtained when

N=4, 10, 50, or 100, and BM=0, 0.025, 0.05, 0.075, or 0.1. The whiter the colors, the faster the learning
speed. Figures S1B and S1C show the learning curves produced when N=10, 50, or 100 with BM=0.025
and N=10 with BM=0, 0.05, or 0.1, respectively. All of the results shown in these figures support our hy-
pothesis that neuronal redundancy maximizes learning speed even when adaptable recurrent connections
are included.

Recurrent connections have their own functional roles, however. By comparing the results obtained
when BM = 0 and otherwise, we confirmed that recurrent connections facilitate learning speed. Addi-
tionally, figure S1D shows the variance of the learning curves when N = 100, showing that the more BM

increases, the smaller the variance becomes. This figure suggests another functional role for recurrent
connections: recurrent connections not only facilitate learning speed but also increase the stability of
learning by decreasing the variance of the learning curve.

Nonlinear activation function

There is nonlinearity in the input-output relationship for neural responses. Therefore, we needed to
confirm that neuronal redundancy maximizes learning speed even when the neural network included
nonlinearity. In this case, neural activities were determined through a nonlinear function σ(·):

At
k(t) = σ

(
W ttk(t)

)
, (3)

with σ causing the update rule of W to change to

W t+1 = W t + Bdiag
(
σ′(W ttk(t)

))
ZT RT ettT

k(t), (4)

where diag(a) denotes the diagonal matrix in which the (i, i)th component is the ith element of vector
a, and σ′(·) denotes the derivative of the nonlinear function. We use a sigmoid function:

σ(z) =
K

2
(1 + tanh(βz)), (5)

where K and β indicate the upper limit of the activation function and the slope of the sigmoid function,
respectively (K = 2 and β = 1 throughout this section).

Figures S2A and S2B show learning speed when N=10, 50, 100, or 1000 and the learning curve for
N=4, 10, or 100, respectively. These figures suggest that neuronal redundancy maximizes learning speed,
even in this nonlinear network.
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Figure S1: Relationship between learning speed, neuronal redundancy, and adaptable
recurrent connections (K = 8). (A): Learning speed when N = 4, 10, 50, 100 and BM =
0, 0.025, 0.05, 0.075, 0.1. The whiter the color, the faster the learning speed. (B): Learning curves ob-
tained when N=10, 50, or 100 and BM = 0.025. These curves show the average values of 1,000 randomly
sampled sets of ϕ. Error bars represent the standard deviations of the errors. (C): Learning curves
obtained when BM = 0, 0.05, 0.1 and N = 10. These curves and error bars show average values and
standard deviations. (D): Variance of the learning curve when BM = 0, 0.05, 0.1 and N = 100 (K = 8).
These variances are average values from 1,000 randomly sampled sets of ϕ.

Nonlinear task

This study has discussed the relationship between neuronal redundancy and learning speed using a linear
rotational perturbation R, but it is still uncertain whether our results hold when the constrained tasks
are nonlinear. In fact, our motor system can solve nonlinear constrained tasks because the system needs
to control nonlinear muscle units. We investigated whether our results hold even when a neural network
needs to control nonlinear units.

In this case, motor commands are determined by

xt
k(t) = RZM [M t

k(t)]+, (6)
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Figure S2: Relationship between learning speed and neuronal redundancy in the case of a
nonlinear neural network (K = 8). (A): Learning speed when N=10, 50, 100, and 1000. The bar
graphs and error bars depict sample means and standard deviations, both of which are calculated using
the results of 1,000 randomly sampled sets of ϕ values. (B): Learning curves obtained when N = 4, 10,
or 100. These curves and error bars show average values and the standard deviations of the errors.

where M ∈ RMu×1 is the activation of muscle units, ZMu ∈ R2×Mu is the decoder, and Mu represents

the number of muscle units. The decoder is defined as ZMu = 1
Mu

(
cos ϕm

1 ... cos ϕm
Mu

sinϕm
1 ... sin ϕm

Mu

)
, where ϕm

i

is the pulling direction of the ith muscle, the direction determined by assuming the wrist step tracking
task in a midrange posture [2–4] (i = 1, ...,M). [·]+ indicates the threshold linear function that satisfies
[a]+ = a if a > 0 and [a]+ = 0 in other cases (this is the function providing nonlinearity). Muscle
activations are determined by

M t
k(t) = CAt

k(t), (7)

where C ∈ RM×N represents the cortico-muscle connections, and each component is randomly sampled
from a normal Gaussian distribution. The synaptic weights W are learned to minimize the squared error
between t and x:

W t+1 = W t + B[CT ]+ZT RT et
k(t)t

T
k(t), (8)

where all elements of the mth row in [C]+ are set to 0 if the mth muscle activity equals 0. Because the
nonlinear task is difficult, this task includes 10,000 baseline and 10,000 learning trials.

Figures S3A and S3B show the learning speed when N=10, 20, 50, 100, or 1000 and the learning
curve for N=10 or 100. Although there was no significant difference in learning speed between the cases
in which N=100 and N=1,000 for the 1% criterion, neuronal redundancy maximized learning speed, even
in this nonlinear task.

Stochastic gradient methods

This study used the deterministic gradient descent method, which can explain the results of motor learning
experiments. Although recent studies have suggested that this method is likely to be biologically plausible,
other studies have suggested that stochastic gradient descent methods are more biologically plausible. We
therefore confirmed that our results hold when a stochastic gradient method is used for the learning rule.
We considered two representative stochastic methods: the weight perturbation and node perturbation
algorithms [5].
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Figure S3: Relationship between learning speed and neuronal redundancy when the neural
network includes nonlinear muscle units (K = 8). (A): The bar graphs and error bars depict sample
means and standard deviations, both of which were calculated using the results of 1,000 randomly sampled
sets of C values. (B): Learning curves obtained when N = 10 or 100. These curves and error bars show
average values and the standard deviations of the errors.

Weight perturbation

The weight perturbation algorithm estimates the gradient ∂E
∂W by applying noise to synaptic weights.

Synaptic weight W is updated as

W t+1 = W t − ησw(Et
WP − Et)ψt, (9)

where ψt ∈ RN×2 is a normal Gaussian random variable, σw is the standard deviation of the noise
(σw = 1 throughout this section), Et

WP is the squared error when the noise ψt is applied to synaptic
weight W , and Et is the reference error when no noise is applied:

Et
WP − Et =

1
2
(et

k(t) − RZψttk(t))T (et
k(t) − RZψttk(t)) −

1
2
(et)T

k(t)e
t
k(t). (10)

Noise averaging yields the update rule of synaptic weights:

〈W t+1〉 = 〈W t〉 + Bσ2
wZT RT et

k(t)t
T
k(t). (11)

This is equivalent to deterministic gradient descent, except for the noise variance σ2
w. Because of this

equivalence, neuronal redundancy also maximizes learning speed when the learning rule is weight pertur-
bation.

We confirmed these analytical results using numerical simulations. Figures S4A and S4B show the
learning speed when N=10, 50, 100, or 1,000 and the learning curve when N=4, 10, or 100 when the
weight perturbation is used. Although there was no significant difference in learning speed between the
cases in which N=100 and N=1,000, neuronal redundancy maximized learning speed, even in the case of
weight perturbation.



5

Node perturbation

Node perturbation estimates the gradient ∂E
∂W by applying noise to the output units. In the algorithm,

the update rule of the synaptic weight W is

W t+1 = W t − ZT RT ησn(Et
NP − Et)εttT

k(t), (12)

where εt ∈ R2×1 is a normal Gaussian random variable, σn is the standard deviation of the noise (σn = 0.3
throughout this study), Et

NP is the squared error when the noise εt is applied to the output units, and
Et is the reference error when no noise is applied:

Et
NP − Et =

1
2
(tk(t) − (xk(t) + εt))T (tk(t) − (xk(t) + εt)) − 1

2
(tk(t) − xk(t))T (tk(t) − xk(t)). (13)

Noise averaging yields the following update rule for synaptic weights:

〈W t+1〉 = 〈W t〉 + Bσ2
nZRet

k(t)t
T
k(t). (14)

This is equivalent to deterministic gradient descent, except for noise variance σ2
n. Because of this equiva-

lence, neuronal redundancy also maximizes learning speed when node perturbation is used as the learning
rule.

Figures S4C and S4D show the learning speed when N=10, 50, 100, or 1000 and the learning curve for
N=4, 10, or 100 when node perturbation is used. Although there was no significant difference in learning
speed between the cases in which N=100 and N=1,000, neuronal redundancy maximized learning speed,
even in the case of node perturbation.

Synaptic decay

As described in the Methods section, when synaptic decay exists (0 ¿ A < 1), our analytical calculations
revealed that neuronal redundancy not only maximizes learning speed but also minimizes residual error.
We confirmed this analytical result using numerical simulations. Figures S5A, S5D, and S5G show the
residual error when A = 0, 0.005, and 0.01, respectively. Figures S5B, S5E, and S5H show learning speed
when A = 0, 0.005, and 0.01, respectively. The results in these figures confirm our analytical results;
neuronal redundancy not only maximizes learning speed but also minimizes residual error.

Optimal learning rate

We defined the learning rate as NB, but it remains unclear why the rate is multiplied by N . Werfel et
al. reported that the optimal learning rate and speed decrease as the number of neurons increases [5],
which is contradictory to our results. It should be noted that, in their model, the number of neurons N
corresponds to the number of input units M . This section analytically reveals that learning rate should
be O(N) and that our results do not contradict Werfel’s results. In our study, the optimal learning rate
is O(N), and learning speed is inversely proportional to the number of input units.

To analytically calculate the optimal learning rate and speed, each component of t is assumed to be
randomly sampled from a Gaussian distribution whose mean and variance are 0 and γ2, respectively.
The optimal learning speed ideally should be investigated using all of the possible input sequences t1, ...,
tTrial. Although, in general, this calculation is analytically and numerically intractable, we can calculate
the average learning speed across all the possible input sequences by calculating the average learning
curve

〈Et+1〉 =
∫

dtP (t)Et+1 (15)
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Figure S4: Relationship between learning speed and neuronal redundancy in the case of
weight perturbation and node perturbation (K = 8). (A): Learning speed when N = 4, 10, 100, or
1000, with weight perturbation as the learning rule. The bar graphs and error bars depict sample means
and standard deviations, both of which are calculated using the results of 1,000 randomly sampled sets
of ϕ. (B): Learning curves obtained when N = 4, 10, or 100, with weight perturbation as the learning
rule. These curves and error bars show the average values and the standard deviations of the errors.
(C): Learning speed when N = 4, 10, 100, or 1000, with node perturbation as the learning rule. The bar
graphs and error bars depict sample means and standard deviations, both of which are calculated using
the results of 1,000 randomly sampled sets of ϕ. (D): Learning curves obtained when N = 4, 10, or 100,
with node perturbation as the learning rule. These curves and error bars show average values and the
standard deviations of the errors.

if P (t) is Gaussian. Equation (15) can be written as

〈Et+1〉 =
1
2

∫
dtt+1P (tt+1)dttP (tt)(tt+1)(I − ZW t+1)T (I − ZW t+1)tt+1

=
γ2

2
Tr

[
(I − ZW t+1)T (I − ZW t+1)

]
, (16)

where we use xT Ax = Tr[AxxT ]. Substituting the update rule of W t+1, equation (16) can be written
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Figure S5: Relationship between residual error, learning speed, and neuronal redundancy
with synaptic decay included (K = 8). (A): Residual error when A = 0. The bar graphs and error
bars denote sample means and standard deviations, both of which are calculated using the results of
1,000 randomly sampled sets of ϕ values. (B): Learning speed when A = 0. The bar graphs and error
bars depict sample means and standard deviations. (C): Learning curves obtained when N = 4, 10, and
100 and A = 0. These curves and error bars show average values and standard deviations. (D): Residual
error when A = 0.005. (E): Learning speed when A = 0.005. (F): Learning curve when A = 0.005. (G):
Residual error when A = 0.01. (H): Learning speed when A = 0.01. (I): Learning curve when A = 0.01.

as

〈Et+1〉 =
γ2

2
Tr

[
(I − ZW t)T (I − ZW t) − 2ηγ2(I − ZW t)T ZZT (I − ZW t)

+ 2η2γ4(I − ZW t)T ZZT ZZT (I − ZW t) + η2γ4Tr[(I − ZW t)T ZZT ZZT (I − ZW t)]
]
,

(17)

which can be simplified as

(ēt+1
km )2 = γ2(1 − 2ηγ2λk + (M + 2)η2γ4λ2

k)(˜̄et
km)2 = Lk(η)(ēt

km)2, (18)

where we use 〈ttT AttT 〉 = γ4(A + AT ) + γ4Tr[A]I, ZT Z = V T λV , ē = V (I − ZW ), λk is the kth
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eigenvalue of ZT Z and O( 1
N ), and λ2

k is O( 1
N2 ) (k = 1, ...,M , m = 1, ...,M). Learning speed is thus

determined by Lk(η) because

〈Et+1〉 =
γ2

2

M∑
k

M∑
m

(ēt+1
km )2 =

γ2

2

M∑
k

M∑
m

Lk(η)(ēt
km)2, (19)

which means that, the smaller Lk becomes, the faster the learning speed becomes.
We can calculate the maximal learning speed with optimization of Lk(η) with respect to η. We define

the cost function as the average learning speed

L(η) =
1
M

M∑
k

Lk(η) =
1
M

M∑
k

γ2(1 − 2ηγ2λk + (M + 2)η2γ4λ2
k) (20)

because k-independent η needs to be determined to minimize all the Lk(η). Optimized η can be calculated
as

η∗ =
1

γ4(M + 2)

∑M
k λk∑M
k λ2

k

(21)

which means the optimized L(η∗) is given by

L(η∗) = 1 − 1
M

1
M + 2

(
∑M

k λk)2∑M
k λ2

k

. (22)

Thus, learning speed decreases if M(=T ) increases, which is in agreement with Werfel’s result. Numerical
calculations support this agreement and our hypothesis: the more M grows, the slower learning speed
becomes, and the more N grows, the faster learning speed becomes (figure S6A). In addition, when each
component of Z is O( 1

N ), η∗ is O( N
M ), which means that the optimal learning rate can be written as

η∗ = NB∗. It should be noted that neuronal redundancy maximizes learning speed even when each
component of Z is O(1) (figure S6B). In this case, η∗ is O( 1

N ). This study therefore considered a
near-optimal learning rate, and our results do not contradict to Werfel’s study.
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Figure S6: Calculated L(η∗) values for N = 2, 4, 10, or 100 and T = 1, 2, 4, 10, 20, 50, or 100. (A):
Solid lines and error bars depict means and standard deviations of the values calculated using 100 sets of
randomly sampled Z values. Zji has a mean and variance of 0 and 1

N2 , respectively. The smaller L(η∗)
becomes, the faster learning speed becomes. (B): Calculated L(η∗) values obtained when each component
of Z is O(1), i.e., Zji has mean and variance that are 0 and 1, respectively.
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