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This Supporting Text details the application of the generalized modeling-based early warning approach
to the fishery simulation and the tri-trophic food chain simulation. (The method for the Allee effect
application is described in the main text.) The simulation models, used to generate the data to which
the early warning signals were applied, are also described.

Early warning signal calculation

Fishery simulation of Biggs et al.

We assumed the following knowledge:

• The populations of adult piscivores Ai and planktivores Fi at the start of year i

• The number of adult piscivores harvested Qi = Q(Ai) during year i

• That adult piscivores die from other causes at a per-capita rate m

• That adult piscivores predate on the planktivores

• That there is a net movement of planktivores into (out of) the foraging arenas from (to) refugia [2]
of Ri in year i

• That per-capita, and in the absence of interactions with other modeled populations, r piscivores
would be born and mature into adult piscivores the following year

• That however juvenile piscivores are predated on by planktivores [3] and are also controlled, for
example by accidental predation, by the adult piscivores [4].

This knowledge is represented schematically in Fig. 1 of the main text.
We constructed a generalized model of this fishery by modeling only the year-end piscivore populations

Ai and planktivore populations Fi with a discrete map. As a consequence we could avoid explicitly
modeling the complications of intra-annual dynamics such as piscivore reproduction and maturation. We
wrote:

Ai+1 = (1−m)(Ai −Qi) + rAi − Ci (1a)

Fi+1 = Fi +Ri −Di. (1b)

The first term of Eq. (1a) gives the number of surviving adult piscivores after harvesting (Qi) and
other causes of mortality (m). The second term rAi models reproduction without losses and the third
Ci = C(Ai, Fi) gives the predatory or controlling effects of planktivores and adult piscivores on the
number of new adult piscivores. Since C depends twice on the adult piscivore population, first through
the number of juvenile piscivores born and again through the controlling effect of the adults, we assume
C is quadratic in Ai.

In Eq. (1b), Ri models the net influx of planktivores into the foraging arenas. Since the planktivore
population was initially small, we assumed there was negligible outflow of planktivores, and that the
inflow depended on a refuge size that was constant. Therefore Ri = R was constant. [In the other
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scenario considered by Biggs et al. [5], where habitat destruction causes the refuge size to decrease,
Ri would not be constant.] The remaining term Di = D(Ai, Fi) models all other factors changing the
planktivore population, most importantly predation by adult piscivores. Since the planktivore population
was initially small, we assumed D to be linear in Fi.

From the output of the simulation model (described below) we recorded annual adult piscivore density,
planktivore density, and piscivore catch. Since the ecosystem approached the critical transition more
slowly than the model with Allee effect above, to remove noise we found it necessary to smooth estimates
of the gradients. For each new observation at time ti, we fitted a second-order polynomial (since the
method eventually results in differences of up to second order) to the record of each observed time series
up to that time. Since it is the gradients at the current time that are most important, in the fit we applied
a weight to each data point j of exp[(tj − ti)/τ ] with τ = 10. Gradients were then extracted directly from
the coefficients of the polynomial fit. This simulated the calculation of early warning signals ‘on the fly’,
as new observations become available.

Specifically, at each time i we fitted the three polynomials

F̃j = pF0 + pF1(j − i− 1) + pF2(j − i− 1)2, j = 0, . . . , i+ 1

Ãj = pA0 + pA1(j − i− 1) + pA2(j − i− 1)2, j = 0, . . . , i+ 1

Q̃j = pQ0 + pQ1(j − i) + pQ2(j − i)2, j = 0, . . . , i

to our three input time series. We assume that at year i, as well as the fish harvest for that year (Qi) we
also have already available the piscivore and planktivore populations at the end of that year (Ai+1 and
Fi+1, respectively). Changing this assumption and using only previous population observations does not
significantly change our results.

These smoothed observations were sufficient to calculate the Jacobian of Eqs. (1),

J =

[

1−m+ r − (1−m)Q′(A) − C ′(A) −C ′(F )

−D′(A) 1−D′(F )

]

,

where we use the notation ∂H/∂x ≡ H ′(x). The eigenvalues λ of the Jacobian, which may be complex
numbers, are the solutions of det(J − λI) = 0 where I is the (2× 2) identity matrix.

Our procedure to estimate the Jacobian at time i was then as follows. From the assumption of linearity
of Q in A,

Q̃′(A) = Q̃/Ã = pQ0/pA0.

Estimates of C̃ and D̃ can be found by solving Eqs. (1). Together with the assumptions that C is
quadratic in A and D linear in F , it follows that

C̃ ′(A) = 2C̃/Ã = 2
(

−pA0 + (1 + r −m)Ãi − (1−m)pQ0

)

/pA0

D̃′(F ) = D̃/F̃ = (−pF1 +R) /pF0

Finally, by solving linear Taylor expansions of the form

∆C = C ′(A)∆A+ C ′(F )∆F, (2)

the derivatives

C̃ ′(F ) =
∆C − C̃ ′(A)∆A

∆F
=

(

−pA0 + (r −m)Ãi − (1 + r −m)Ãi−1 − (1−m)pQ1 − C̃ ′(A)pA1

)

/pF1

D̃′(A) =
∆D − D̃′(F )∆F

∆A
=

(

−2pF2 − D̃′(F )pF1

)

/pA1

were estimated.
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This generalized modeling approach required estimates of the adult piscivore mortality m and repro-
duction rate r, and planktivore influx R from refugia. We assumed the fishery manager could estimate
m = 0.4 and r = 1.1 from knowledge of the fish species and the fishery. Effective values m = 0.5 and
r = 1 can be derived from the actual simulation’s equations [5]. The planktivore influx R would be
harder to estimate in practice. In the absence of such knowledge, the ecosystem manager could make use
of the fact that the fish populations were initially stable. This knowledge constrains R to the range 0.1
to 1.5, as values outside these ranges produce an eigenvalue with magnitude greater than one between
times t = 0 to 10. We used R = 0.9. Indeed, this knowledge could also be used to constrain m and r to
the ranges 0.1 to 0.7 and 0.95 to 1.5, respectively. We found that any combination of m, r and R that
gave an initially stable system robustly predicted the later critical transition.

Tri-trophic food chain

To obtain an early warning signal for this transition, we constructed a generalized model of the tri-trophic
food chain

d

dt
X1 = A(X1)−G(X1, X2) (3a)

d

dt
X2 = G(X1, X2)−H(X2, X3) (3b)

d

dt
X3 = H(X2, X3)−M(X3, µ), (3c)

where X1, X2 and X3 are the biomasses of the three species in the food chain, A(X1) is the primary
production rate of X1, G(X1, X2) and H(X2, X3) are the rates at which X2 and X3 consume X1 and
X2, respectively, and M(X3, µ) is the total mortality per unit time of the top-level predator X3, with the
argument µ denoting it is subject to a changing external influence. The approach could also easily be
extended to the case of incomplete biomass conversion efficiencies, if estimates of those efficiencies were
available.

We assumed: access to observations of all three biomasses X1, X2 and X3, and the top-predator
mortality M(X3, µ); that this mortality is linear in X3 so that M = m(µ)X3; and that the predation
rates G(X1, X2) and H(X2, X3) are linear in their respective predator biomasses. The ‘observed’ time
series were first smoothed by the same filter as in the fishery simulation, but with τ = 20.

The Jacobian matrix of Eqs. (3) is

J =





A′(1) −G′(1) −G′(2) 0
G′(1) G′(2) −H ′(2) −H ′(3)

0 H ′(2) H ′(3) −M ′(3)



 ,

where we denote F ′(a) ≡ ∂F/∂Xa. We computed the quantities in the Jacobian as follows. By rearranging
Eqs. (3), first H then G then A can be found. With the assumptions of linearity listed above, it follows
that

M̃ ′(3) = M̃/X̃3 = pM0/pX3,0

H̃ ′(3) = H̃/X̃3 = (pX3,1 + pM0) /pX3,0

G̃′(2) = G̃/X̃2 = (pX2,1 + pX3,1 + pM0) /pX2,0.

Through a Taylor expansion as in Eq. (2),

H̃ ′(2) =
(

∆H − H̃ ′(3)∆X3

)

/∆X2 =
(

2pX3,2 + pM1 − H̃ ′(3)pX3,1

)

/pX2,1

G̃′(1) =
(

∆G− G̃′(2)∆X2

)

/∆X1 =
(

2pX2,2 + 2pX3,2 + pM1 − G̃′(2)pX2,1

)

/pX1,1
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The last unknown in the Jacobian to be determined is

Ã′(1) = (2pX1,2 + 2pX2,2 + 2pX3,2 + pM1) /pX1,1.

Simulation models

Single population with Allee effect

To test the early warning signal described in the main text we simulated a simple model

d

dt
X =

AX2

k2 +X2
−mX + σξ(t), (4)

based on Yeakel et al. [1]. We included a small additive noise term σξ(t), with standard deviation σ and
autocorrelation 〈ξ(t)ξ(t′)〉 = δ(t − t′). Throughout the simulation we slowly changed the mortality rate
m according to m = 7.5 + 0.2t.

Fishery simulation of Biggs et al.

We generated data for this early warning signal test with the previously published fishery model of
Biggs et al. [5]. Their model is a hybrid discrete-continuous system and explicitly models the adult
piscivore, juvenile piscivore and planktivore populations. The intra-annual dynamics are continuous,
modeling: the harvest of adult piscivores; the predation and control of planktivores and juvenile piscivores,
respectively, by adult piscivores; predation on juvenile piscivores by planktivores; and the movement of
both planktivores and juvenile piscivores between the foraging arenas and refugia. At the end of each
year discrete update rules were applied that controlled the mortality of adult piscivores, maturation of
the surviving juvenile piscivores into adult piscivores, and birth of more juvenile piscivores. There was an
additive noise term on the planktivore population dynamics. For further details of the model including
its mathematical formulation see Biggs et al. [5].

Tri-trophic food chain

To generate example time series data we used a conventional equation-based model in which a producer
biomass, X1, predator biomass, X2, and top predator biomass, X3, follow

d

dt
X1 = AnX1(Kn −X1)−

BX2
1X2

K3 +X2
1

+ σ1ξ1(t) (5a)

d

dt
X2 =

BX2
1X2

K3 +X2
1

−
ApX

2
2X3

Kp +X2
2

+ σ2ξ2(t) (5b)

d

dt
X3 =

ApX
2
2X3

Kp +X2
2

−mX3 + σ3ξ3(t). (5c)

In these equations we assumed Holling type-3 predator-prey interaction, logistic growth of the producer
and linear mortality of the top predator and ξi(t) are additive noise terms with 〈ξi(t)ξj(t

′)〉 = δijδ(t− t′).
If any biomass decreased to zero, we suppressed the noise term so that the corresponding population
remained extinct.
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