
Supporting Information
A. Details of experimental methods. All chemicals, unless otherwise specified, were
from Sigma-Aldrich. Lentivirus carrying the ChIEF-GFP construct [4] under control of the
CaMKII promoter was stereotactically injected into the CA3 region of the hippocampus
3–6 weeks prior to the experiments. Hippocampal slices, 450 µm thick, cut in the horizon-
tal plane, were then obtained from C57BL/6 mice that had undergone viral injection. The
solution used during recording contained 126 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4,
2 mM CaCl2, 2 mM MgSO4, 24 mM NaHCO3, and 10 mM glucose, saturated with 95%
O2 and 5% CO2. Experiments were performed in an interface chamber kept at 34oC. Af-
ter letting the slices recover in the interface chamber for 15 minutes, kainic acid (Cayman
Chemical) was bath applied at a concentration of 400 nM. Light pulse trains were synthe-
sized by custom software written in Matlab (Mathworks), then played back via a DG-4
optical switch with a 300 W xenon lamp (Sutter Instruments) and GFP filter set (Chroma).
Pulled glass electrodes placed in the CA3 stratum radiatum were used for all local field
potential (LFP) recordings.

The spectral analysis of the LFP recordings was conducted off-line. To calculate the
evolution of spectral energy in the 25–50 Hz range over time, the signal was band-passed in
the 25–50 Hz range, using the “eegfilt” routine in the EEGLAB package (Schwartz Center
for Computational Neuroscience), and the instantaneous energy estimated by taking the
L2-norm of the analytic signal. The resulting energy vs. time profile was calculated for
each trial and then pooled for subsequent analysis.

The peak frequencies of the baseline and of the optogenetically induced oscillations
were determined from the power spectral density of (detrended, but not filtered) LFP data.
Power spectral densities were estimated using the “pwelch” routine in Matlab, which im-
plements Welch’s method [8].

B. Modeling details. Each figure of this paper is generated by a stand-alone Matlab pro-
gram, available from the first author upon request. Here we give the full details of the
models underlying the figures in the main text.

Figure 2: The I-cell is a Wang-Buzsáki model neuron [7]:

C
dv
dt

= gNam∞(v)3h(vNa− v)+gKn4(vK− v)+gL(vL− v)+ Ii, (S1)

dh
dt

=
h∞(v)−h

τh(v)
, (S2)

dn
dt

=
n∞(v)−n

τn(v)
, (S3)
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with

x∞(v) =
αx(v)

αx(v)+βx(v)
for x = m,h, or n, (S4)

τx(v) =
0.2

αx(v)+βx(v)
for x = h or n, (S5)

αm(v) =
0.1(v+35)

1− exp(−(v+35)/10))
,

βm(v) = 4exp(−(v+60)/18),
αh(v) = 0.07exp(−(v+58)/20),

βh(v) =
1

exp(−0.1(v+28))+1
,

αn(v) =
0.01(v+34)

1− exp(−0.1(v+34))
,

βn(v) = 0.125exp(−(v+44)/80) .

Here v denotes voltage in mV, t denotes time in ms, and I denotes current density in µA/cm2.
The parameters are C = 1 µF/cm2, gNa = 35 mS/cm2, gK = 9 mS/cm2, gL = 0.1 mS/cm2,
vNa = 55 mV, vK =−90 mV, and vL =−65 mV.

The excitatory pulse is assumed to arrive at time 0, modeled by adding the term

−Geie−t/τev

to the right-hand side of Eq. S1, with τe = 3 ms and Gei > 0. (The added term drives v
towards 0 mV, hence it is excitatory.) We denote by Ts the time at which the I-cell spikes;
throughout the paper, we take the “spike time” to be the time when the membrane potential
v rises above 0 mV. Since Ts is a function of Gei and the external drive Ii, we also write
Ts = Ts(Gei, Ii). With this notation, panel A of Fig. 2 shows Ts(Gei,−0.15)−Ts(Gei,0.15),
as a function of Gei, and panel B shows Ts(0.7Gei,0)−Ts(Gei,0), as a function of Gei.

Figure 3: The I-cells are as in Fig. 2. The E-cells are as in ref. [5]. Eqs. (S1)–(S4) are as
in the I-cell model, with Ii replaced by Ie in Eq. (S1). Eq. (S5) is replaced by

τx(v) =
1

αx(v)+βx(v)
for x = h or n. (S5)′

The rate functions αx and βx, x = m,h, and n, are
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αm(v) =
0.32(v+54)

1− exp(−(v+54)/4)
,

βm(v) =
0.28(v+27)

exp((v+27)/5)−1)
,

αh(v) = 0.128exp(−(v+50)/18),

βh(v) =
4

1+ exp(−(v+27)/5)
,

αn(v) =
0.032(v+52)

1− exp(−(v+52)/5))
,

βn(v) = 0.5exp(−(v+57)/40) .

The parameter values of the E-cell model are C = 1 µF/cm2, gNa = 100 mS/cm2, gK = 80
mS/cm2, gL = 0.1 mS/cm2, vNa = 50 mV, vK =−100 mV, and vL =−67 mV.

We denote in general the number of E-cells in our network by Ne, and the number of
I-cells by Ni. We adopt the synaptic model of ref. [2]. Each synapse is characterized by
a synaptic gating variable s associated with the presynaptic neuron, with 0 ≤ s ≤ 1. This
variable obeys

ds
dt

= H(v)
1− s

τR
− s

τD
, (S6)

where H denotes a smoothed Heaviside function:

H(v) =
1+ tanh(v/4)

2
, (S7)

and τR and τD are the rise and decay time constants, respectively. To model the synaptic
input from neuron j to neuron k, we add to the right-hand side of the equation governing
the membrane potential vk of neuron k a term of the form

g( j,k)s j(t)(vrev− vk),

where g( j,k) denotes the maximal conductance density associated with the synapse, s j
denotes the gating variable associated with neuron j, and vrev denotes the synaptic reversal
potential. For AMPA-receptor-mediated synapses, we use τR = 0.1 ms, τD = 3 ms, and
vrev = 0 mV; for GABAA-receptor-mediated synapses, τR = 0.3 ms, τD = 9 ms, and vrev =
−80 mV. We also refer to the maximal conductance g( j,k) as the “strength” of the synapse.

The strength of the synaptic connection from the j-th E-cell to the k-th I-cell is random,
chosen prior to the beginning of the simulation and fixed from then on:

gei( j,k) =
{

γei with probability pei,
0 with probability 1− pei,

where γei and pei are independent of j and k, γei > 0 and 0 < pei ≤ 1. We define

Gei(k) =
Ne

∑
j=1

gei( j,k)
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to be the sum of all excitatory synaptic conductance densities impinging upon the k-th
I-cell, and

Gei =
1
Ni

Ni

∑
k=1

Gei(k).

Analogous formulas define gie, Gie, Gie, gii, Gii, Gii, gee, Gee, and Gee. We do not include
E-to-E-synapses throughout most of this paper (so usually gee( j,k) = 0 for all j and k), but
see Supporting Information C.

The strength of the external input to the j-th E-cell is also random, chosen prior to the
beginning of the simulation and fixed throughout:

Ie, j = (1+ reZ j)Ie, (S8)

where Ie is independent of j, the Z j are independent standard Gaussians, and re≥ 0. We say
then that the heterogeneity in the external drives to the E-cells is re×100%. For instance,
when re = 0.15, we say that there is 15% heterogeneity in the drives to the E-cells. The
strength of the external input to the k-th I-cell is defined by

Ii,k = Ii + riUk, (S9)

where the Uk are independent random variables uniformly distributed in [−1,1], and ri ≥ 0.
We do not use a formula exactly analogous to Eq. (S8) for Ii,k because drives to the I-cells
will often be taken close to zero, and it can therefore be misleading to specify relative
fluctuations of those drives.

In Fig. 3, Ne = 80 and Ni = 20. In panels A–I, Gie = 0.3 mS/cm2 and Gii = 0.05
mS/cm2. In panels A, D, and G, Gei = 0.12 mS/cm2. In panels B, E, and H, Gei = 0.08
mS/cm2. In panels C, F, and I, Gei = 0.04 mS/cm2. In panels A–C, pei = pie = pii = 1. In
panels D–F, pei = 0.5 and pie = pii = 1. In panels G–I, pei = pie = pii = 0.5. In all panels,
Ie = 1.5 µA/cm2 and Ii = 0 µA/cm2. In panels A–F, external drives are homogeneous:
re = ri = 0. In panels G–I, they are heterogeneous: re = 0.15 and ri = 0.2.

The parameters in panel J are the same as in panel I, except Ii = 0.4 µA/cm2 and Gii = 0
mS/cm2.

Figure 4: The rhythmicity measure ρ associated with a network is defined as follows. We
simulate the network starting at time t = T0 =−100 ms and ending at time t = T1 = 1,000
ms. To avoid initialization effects, we disregard the initial 100 ms, analyzing the results
for t between 0 and T1 = 1,000 ms only. We denote the average of the synaptic gating
variables associated with the E-cells by sE . Thus our simulation generates sE(t), t = k∆t,
with k = 0,1,2, ...,T1/∆t. We write M = T1/∆t. In the simulations of this paper, we always
use ∆t = 0.02 ms, and therefore M = 50,000. We expand sE into a discrete Fourier series
of period T1:

sE(t) =
M/2−1

∑
ν=−M/2

ŝE(ν)eiν2πt/T1 , t = k∆t, k = 0,1,2, ...,M−1.
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Note that the period of the Fourier mode eiν2πt/T1 equals T1/ν = 1,000/ν ms, and therefore
its frequency is ν Hz. We define

ρ =

√
∑

30≤|ν|≤50
|ŝE(ν)|2√

∑
−M/2≤ν<M/2

|ŝE(ν)|2
. (S10)

By Parseval’s identity, the denominator of the right-hand side of Eq. (S10) equals, up to a
factor of

√
∆t/T1, the energy (i.e., discrete L2-norm) of sE = sE(t), 0 ≤ t < T1. Similarly,

the numerator, up to the same factor, equals the energy of the component of sE in the
gamma range, defined for the purposes of this figure to be the 30–50 Hz range. (In the
simulations of Fig. 4, there are no significant rhythms outside the 30–50 Hz range.) Thus
ρ is the fraction of the energy of sE that lies in the gamma range.

Figure 5: The E-cell is defined as described earlier in the supporting information about Fig.
3. The drive to the E-cell is Ie = 1.6 µA/cm2, far above the spiking threshold. We assume
that at time zero, the point (v,n,h) lies on the limit cycle, and v = 0 mV, dv/dt > 0. (These
conditions determine (v,n,h) uniquely). We add to the right-hand side of the equation
describing the evolution of the membrane potential v of the E-cell a term of the form{

Giee−(t−t∗)/τi(vinh− v) if t ≥ t∗,
0 if t < t∗,

where vinh =−80 mV denotes the reversal potential of inhibitory synapses, and τi = 9 ms
is the decay time constant of inhibition. We denote by T̂ the time of the next spike, where
“time of spike”, as before, means the time at which v rises above 0 mV, i.e., v = 0 mV and
dv/dt > 0. We define δ = T̂ − t∗. Figure 5 shows δ as a function of t∗ for Gie = (A) 0.24,
(B) 0.12, (C) 0.06, and (D) 0 mS/cm2.

Figure 6: This is a network simulation as in Fig. 3. In all panels of the figure, Gei = 0.12
mS/cm2 and Gii = 0.05 mS/cm2. In panel A, Gie = 0.2 mS/cm2. In panel B, Gie = 0.05
mS/cm2, and in panel C, Gie = 0.02 mS/cm2. In all panels, pei = pie = pii = 1, Ie = 1.5
µA/cm2, Ii = 0 µA/cm2, re = ri = 0.

Figure 7: Same as Fig. 6, except pei = 0.5, re = 0.1.

Figure 8: Panel A is a closeup of panel A of Fig. 7. In Panel B, the parameter values are
those of Fig. 7 as well, except Gie is ten times greater: Gie = 2.0 mS/cm2.

Figure 9: The quantity ρ plotted in Fig. 9 is essentially that plotted in Fig. 4 (see Eq.
(S10)), with one modification: We define the gamma range to be the range from 30 to 60
Hz here. The reason is that the rhythms become fairly fast as Gie is weakened, making a
wider definition of the gamma range more appropriate. Thus the definition of ρ used in
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Fig. 9 is

ρ =

√
∑

30≤|ν|≤60
|ŝE(ν)|2√

∑
−M/2≤ν<M/2

|ŝE(ν)|2
. (S11)

Figure 10. This is an E/I-network like those in the previous figures, but with Ne = 20
and Ni = 1. In all three panels of the figure, Gei = 0.12 mS/cm2 and Gii = 0.05 mS/cm2,
pei = pie = pii = 1, the drive to the j-th E-cell is (1.38+ 0.02 j) µA/cm2, and the drive to
the I-cell is zero. In panel A, Gie = 0.24 mS/cm2; in panel B, Gie = 0.12 mS/cm2; in panel
C, Gie = 0.06 mS/cm2.

Figures 11 and 12: All information is in the figure captions.

Figure 13: Here all E-cells receive stochastically fluctuating input, and some receive con-
stant input in addition. The stochastic component of the drive to an E-cell is modeled by an
additional term on the right-hand side of the evolution equation for the membrane poten-
tial of the form −0.05sstoch(t) v. The gating variable sstoch decays exponentially with time
constant 3 ms during each time step. At the end of each time step, sstoch jumps up to 1 with
probability ∆t/(25 ms), where ∆t > 0 denotes the duration of a time step. This simulates
the arrival of external synaptic input pulses on an approximate Poisson schedule, at a mean
frequency of 40 Hz. (Even though we measure time in ms, we measure frequencies in Hz.)
Different cells in the network receive independent stochastic input streams.

The network in Fig. 13 is larger than in previous simulations: Ne = 320 and Ni =
80. All synapses are strong: Gie = 0.4 mS/cm2, Gei = 0.2 mS/cm2, Gii = 0.1 mS/cm2.
Synaptic connections are sparse and random: pei = 0.5, pie = pii = 0.75. All E-cells receive
a homogeneous base tonic drive of strength 0.2. In addition, the first m E-cells receive
heterogeneous additional tonic drive of strength 2, with re = 0.2, and m= 250 (A), m= 150
(B), m = 50 (C), and m = 0 (D). Drive to the I-cells is characterized by Ii = 0.4 µA/cm2

and ri = 0.2.
The parameters in panel E are those of panel C, except Gei = 0.6 mS/cm2.

Figure 14: Here we assign to each neuron a random location in the disk of radius 1 cen-
tered at the origin of the (x,y)-plane. (Distance is non-dimensionalized.) We choose these
locations with a distribution that is approximately uniform, but avoids the clustering that is
typical of truly uniformly distributed random points. The details are described below.

The locations of the E-cells and those of the I-cells are chosen independently. Suppose
that N is the number of neuron locations to be chosen; N = Ne for the E-cells, and N = Ni
for the I-cells. We choose a number d ≥ 1 and a positive integer M, and cover the square
[−d,d]× [−d,d] with M by M square cells of size h× h, with h = 2d/M. Our choices of
d and M will be stated and motivated shortly. In each of the cells of size h×h, we choose
one random location, with uniform distribution. This results in M2 random points in the
square [−d,d]× [−d,d]. We then discard those points that lie outside the unit disk. The
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total number of points retained is random. To compute its expectation, let

Ql =

{
1 if the point chosen in the l-th h×h-cell belongs to the disk,
0 otherwise,

1 ≤ l ≤ M2. Let Al denote the area of the intersection of the l-th h× h-cell with the unit
disk. Then

E(Ql) = P(Ql = 1) =
Al

h2 .

The expectation of the total number of points that fall into the unit disk is therefore

E

(
M2

∑
l=1

Ql

)
=

M2

∑
l=1

E(Ql) =
M2

∑
l=1

Al

h2 =
π

h2 =
π

(2d/M)2 =
π

4d2 M2.

We would like to choose M and d such that

π

4d2 M2 = N,

i.e.,

M2 = d2 4N
π
.

We therefore choose a positive number d, as small as possible but ≥ 1, such that 4d2N/π

is the square of an integer, then define M =
√

4d2N/π.
The number of points in the unit disk generated in this way is random, with expected

value N. To obtain exactly N locations, we simply repeat the procedure, with different ini-
tial seeds for the random number generator, until, by chance, the exact number of selected
locations becomes N. (This never takes very long, and is not an important part of the cost
of our simulations.)

Figures 15, 16, and 18 show results of simulations in which the neurons are placed
in this way in the unit disk, and connection probabilities decay with distance. In these
simulations, the E-cells in a smaller disk at the center of radius R are driven strongly; an
example is indicated in yellow in Fig. 14.

Figure 15. There are Ne = 320 E-cells and Ni = 80 I-cells, with random spatial locations
in a unit disk as described in the supporting information on Fig. 14. We let the probability
(not the strength) of E-to-I-connections decay as follows:

gei( j,k) =
{

γei with probability e−(d jk/δsyn)
2
,

0 otherwise,
(S12)

where d jk is the (non-dimensionalized) spatial distance between the j-th E-cell and the
k-th I-cell, δsyn > 0 is the (non-dimensionalized) length scale characterizing the decay of
the probability of synaptic connections, and γei > 0 is the strength of an individual E-to-
I-synapse. The I-to-E and I-to-I-synapses are described by analogous formulas, with the
same decay length scale δsyn.
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The strengths of individual synapses are γei = 0.006 mS/cm2 and γie = γii = 0.024
mS/cm2. The length scale δsyn characterizing the decay of connection probabilities is taken
to be 0.25. The E-cells in the disk centered around the origin with radius R receive constant
heterogeneous drive with Ie = 1.5 µA/cm2, re = 0.2, with R = 0.8 (panel A), R = 0.6 (B),
R = 0.4 (C), and R = 0.2 (D). The other E-cells receive no external drive (Ie = 0 µA/cm2).
For all I-cells, Ii = 0.2 µA/cm2 with ri = 0.

Figures 16 and 17. All information is in the figure captions.

Figure 18. Parameters in Fig. 18A are precisely as in Fig. 16A. In panels B and C of Fig.
18, the parameters are the same except for δsyn, which is reduced to 0.20 in panels B and
C, and the synaptic strengths, which are tripled in panel C: The strengths of individual
synapses are γei = 0.009 mS/cm2 and γie = γii = 0.036 mS/cm2 in panel C.

Numerics. All differential equations were solved using the explicit midpoint method with
time step ∆t = 0.02 ms.

C. Effect of E-to-E-synapses on PING. We have left out E-to-E synapses in the model
networks used in this paper. Here we present numerical experiments showing that to first
approximation, E-to-E-synapses simply add excitation to the E-cells, raising the PING fre-
quency but not affecting strong PING in a qualitative way. The additional excitation can of
course be crucial, as illustrated for instance by Spencer [6, Fig. 1]. However, in this paper,
we provide the needed excitation of the E-cells via external drive.

20

100
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100
B

0 100 200 300 400 500

20

100
C

t [ms]

Figure S1: Effects of E-to-E-synapses on PING rhythm. Panel A: Same as panel A of
Fig. 7. Panels B and C: E-to-E-synapses added. In both panels, τR = 0.1 and pee = 0.5.
Panel B: τD = 3 ms, Gee = 0.1 mS/cm2. Panel C: τD = 100 ms, Gee = 0.02 mS/cm2.
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Figure S1A is identical with Fig. 7A. In panels B and C of Fig. S1, we have added
rapidly (panel B) or slowly (panel C) decaying E-to-E-synapses; for the details, see the
figure caption. The E-to-E-synapses raise the frequency from 44 Hz (panel A) to 60 Hz
(panel B) or 68 Hz (panel C).

Figure S1 supports the assertion that the effect of E-to-E-synapses is somewhat akin
to the effect of raising external drive to the E-cells. We think, however, that the role of
E-to-E-synapses in PING rhythms is worth further study in the future. Both slow and fast
E-to-E-synapses do affect weak PING: Not surprisingly, they can greatly raise the rate at
which the E-cells participate in the rhythm.

D. Effect of heterogeneity on synchronization of I-cells by E-cells when excitation is
weak: Analysis of a model problem. For the purposes of the following discussion, we
model an I-cell as the integrate-and-fire neuron defined by

v′ = −v
τ
+ I for v < 1, (S13)

v(t +0) = 0 if v(t−0) = 1. (S14)

When using integrate-and-fire neurons, we non-dimensionalize most physical variables. In
particular, v denotes non-dimensionalized membrane potential, shifted and scaled in such a
way that the re-set value is 0 and the spiking threshold is 1. However, since firing frequency
is crucial to our study, and since we are accustomed to measuring it in Hz, we leave the
time t dimensional, measuring it, as everywhere else, in ms. As a result, τ is also a time
(also measured in ms), and I is a reciprocal time (measured in ms−1). We assume that the
neuron does not spike intrinsically: τI < 1. (Note that τI is non-dimensional.)

Suppose that at time t = 0, v is at its equilibrium:

v(0) = veq = τI,

and then an excitatory input pulse arrives, altering the sub-threshold equation as follows:

v′ =−v
τ
+ I +wϕ(t) (S15)

for t ≥ 0, as long as v< 1, where w> 0 is, like I, a reciprocal time, ϕ≥ 0, and
∫

∞

0 ϕ(t)dt = 1.
(For simplicity, we model the excitatory pulse as current, not synaptic input. Note that due
to the partial non-dimensionalization explained in the previous paragraph, I and w are not,
dimensionally, currents here, but reciprocal times.) We are interested in how variations
in I or w affect the time that it takes to reach the spiking threshold. We show that if the
excitatory pulse can only just barely elicit a response, the dependence of the time to spike
on the parameters I and w becomes great.

Note that
v(t) = τIe−t/τ +

∫ t

0
(I +wϕ(u))e(u−t)/τdu
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for t ≥ 0, as long as v < 1. Let Ts denote the time at which v reaches the threshold 1,
assuming that it ever does. Then

τIe−Ts/τ +
∫ Ts

0
(I +wϕ(u))e(u−Ts)/τdu = 1. (S16)

We note for later reference that this equation can be re-written as∫ Ts

0
ϕ(u)e(u−Ts)/τdu =

1− τe−Ts/τI−TsI
w

. (S17)

Note that Ts is a function of w and I. We are interested in understanding how sensitively Ts
depends on w and I, i.e., in the effects of heterogeneity in w and I. We therefore analyze
the derivatives ∂Ts/∂w and ∂Ts/∂I.

Differentiating Eq. (S16) with respect to w, we find

−Ie−Ts/τ ∂Ts

∂w
+(I +wϕ(Ts))

∂Ts

∂w
+

∫ Ts

0
ϕ(u)e(u−Ts)/τdu

− 1
τ

∂Ts

∂w

∫ Ts

0
(I +wϕ(u))e(u−Ts)/τdu = 0. (S18)

Using Eq. (S17), Eq. (S18) simplifies as follows:

−Ie−Ts/τ ∂Ts

∂w
+(I +wϕ(Ts))

∂Ts

∂w
+

1− τe−Ts/τI−TsI
w

− 1
τ

∂Ts

∂w
TsI−

1
τ

∂Ts

∂w

(
1− τe−Ts/τI−TsI

)
= 0. (S19)

We solve this equation for w∂Ts/∂w:

w
∂Ts

∂w
=−1− τe−Ts/τI−TsI

I +wϕ(Ts)−1/τ
. (S20)

Eq. (S15), together with v(Ts) = 1, implies that the denominator of Eq. (S20) is v′(Ts):

w
∂Ts

∂w
=

1− τe−Ts/τI−TsI
v′(Ts)

. (S21)

We now assume that I is near 0, so that the model I-cell is driven significantly below the
spiking threshold. For I = 0, Eq. (S21) becomes

w
∂Ts

∂w
=

1
v′(Ts)

. (S22)

We interpret Eq. (S22) as follows. The left-hand side is the change in Ts, namely ∂Ts,
divided by the relative change in w, namely ∂w/w. When the input pulse is strong, the time
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that v takes to rise from its resting value to the threshold value should be on the order of a
few milliseconds at most, and v′(Ts) should not be very much smaller than 1. On the other
hand, when the input pulse is only just barely able to trigger a response in the I-cell, then
v′(Ts) is nearly zero; in this case, and only in this case, the right-hand side of Eq. (S21) is
large.

Similarly, differentiating Eq. (S16) with respect to I, we find

τe−Ts/τ− Ie−Ts/τ ∂Ts

∂I
+(I +wϕ(Ts))

∂Ts

∂I
+

∫ Ts

0
e(u−Ts)/τdu

− 1
τ

∂Ts

∂I

∫ Ts

0
(I +wϕ(u))e(u−Ts)/τdu = 0. (S23)

Using Eq. (S17), Eq. (S23) becomes

τe−Ts/τ− 1
τ

∂Ts

∂I
+(I +wϕ(Ts))

∂Ts

∂I
+

∫ Ts

0
e(u−Ts)/τdu = 0.

Evaluating the integral in this equation yields

−1
τ

∂Ts

∂I
+(I +wϕ(Ts))

∂Ts

∂I
+ τ = 0,

or
∂Ts

∂I
=− τ

−1/τ+ I +wϕ(Ts)
,

or
∂Ts

∂I
=− τ

v′(Ts)
. (S24)

Thus ∂Ts/∂I can get large only if v′(Ts) gets small, and as discussed earlier, this means that
the input pulse is only just barely strong enough to elicit a response in the I-cell.

Note that Eq. (S24) implies that Ts depends sensitively on I if v′(Ts) is small provided
that τ is not small as well. We argue in Supporting Information F that τ should not be
chosen much smaller than 10, since otherwise the intrinsic period of the integrate-and-fire
neuron would become too sensitively dependent on I.

In Eq. (S24), the left-hand side is the change in Ts divided by the absolute change in I,
not the relative change in I. By contrast, in Eq. (S22), the left-hand side is the change in
Ts divided by the relative change in w. It is not natural to consider the relative change in I
here, since we are primarily interested in values of I near zero; by contrast, w, the strength
of the excitatory pulse, is not assumed to be near zero, and it is therefore natural to consider
relative, not absolute changes in w in Eq. (S22).

E. Effect of heterogeneity on synchronization of E-cells by I-cells when inhibition is
strong: Analysis of a model problem. We give here an analysis for integrate-and-fire
neurons showing that the effects of heterogeneity in the strength of inhibition and in the
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external drive to the E-cells is largely independent of the strength of inhibition, as long as
inhibition is strong enough to bring a homogeneous population to approximate synchrony
with a single inhibitory pulse, and the external drive to the E-cells is strong enough to drive
a gamma-frequency rhythm. For theta neurons and quadratic integrate-and-fire neurons,
similar results can be found in [1] and [3].

We consider a single integrate-and-fire neuron defined by Eqs. (S13), (S14), but now
think of it as an E-cell, and assume supra-threshold drive: τI > 1; we examine how a strong
inhibitory pulse acts on such a model neuron, and study in particular the dependence of
the response on external drive and strength of inhibition. If this dependence is weak, then
heterogeneity effects will be weak when an inhibitory pulse synchronizes a heterogeneous
population of E-cells.

Assume that at time t = 0, a synaptic pulse of inhibition sets in, decaying exponentially
with time constant τi > 0. For simplicity, we assume that the synaptic reversal potential
is the same as the reset potential, namely 0. (Recall that when using the integrate-and-fire
model, we always assume that the membrane potential is shifted and scaled so that the reset
potential is 0 and the firing threshold is 1.) Thus the equations governing v are

v′ = −v
τ
+ I−ge−t/τiv, (S25)

v(0) = v0, (S26)

with 0 ≤ v0 ≤ 1. (Here g, like I, is a reciprocal time, measured in ms−1.) Let TP > 0 be
the time at which v reaches the spiking threshold 1. (Since τI > 1, there is such a time.) If
v0 = 0, one can think of TP as the period of the strong PING rhythm in a highly idealized
setting.

Even in this very simple model, TP is a function of five variables: I, g, τ, τi, and
v0. To make a complete parameter study feasible, we fix τi = 10 ms and τ = 10 ms. The
choice τi = 10 ms is motivated by the fact that the decay time constant of GABAA-receptor-
mediated inhibition is about 10 ms. We argue in Supporting Information F that τ should not
be chosen much smaller than 10 ms, since otherwise the intrinsic period of the integrate-
and-fire neuron would become too sensitively dependent on I. We have, however, tried
other values of τ, and found that our conclusions are not substantially different for larger
or (somewhat) smaller values of τ.

Now TP depends on only three variables: TP = TP(I,g,v0), I > 0.1, g > 0, v0 ≤ 1. We
will focus on values of g large enough to cause approximate synchronization of a population
of model neurons governed by (S25) with different initial values of v0. We will assume that
g > I− 1/τ. Then the right-hand side of Eq. (S25) is negative for t = 0 and v = 1, so
the pulse of inhibition prevents spiking for some positive amount of time, regardless of v0.
Consequently “TP(I,g,1)”, which we define to be the limit of TP(I,g,v0) as v0 tends to 1
from below, is positive.

Unfortunately, not even for this very simple model is there a simple analytic answer to
the question “For given I, how large does g have to be for synchronization to be tight?”
However, the question can easily be answered numerically. For a given I, we define gI to
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Figure S2: PING period and its sensitivity as a function of drive and strength of inhi-
bition. A: PING period as a function of J = I− 1/τ and h = g− gI . B: The “sensitivity
measure” κ defined in Eq. (S27) as a function of J and h.

be the value of g for which TP(I,g,1) differs from TP(I,g,0) by exactly 10%:

TP(I,gI,0)−TP(I,gI,1)
TP(I,gI,0)

= 0.1.

(The choice of 10% is arbitrary here. Our results would be qualitatively very similar if
we had chosen 5% or 50% here.) For g≥ gI , reasonably tight synchronization is achieved
by a single inhibitory pulse: All TP(I,g,v0), 0 ≤ v0 ≤ 1, are within 10% of TP(I,g,0).
We now write I = 1/τ+ J, J > 0, and g = gI + h, h > 0. Thus J is the amount of drive
above the spiking threshold 1/τ, and h is the inhibitory conductance above the minimal
conductance gI needed for synchronization within 10% as a result of a single pulse. We
plot TP(I,g,0) = TP(1/τ+ J,gI + h,0) as a function of J and h. This is shown in Fig. S2,
panel A. In panel B of the same figure, we show the quantity

κ =
I

TP(I,g,0)
∂TP(I,g,0)

∂I
, (S27)

plotted as a function of J and h. Note that the definition of κ can be re-written (omitting,
for brevity, the arguments (I,g,0)) as

κ =
∂TP/TP

∂I/I
.

A relative change in I causes a κ times greater relative change in the “PING period”
TP(I,g,0). If κ is large, then even modest heterogeneity in I can have a large effect. Thus
κ is a measure of sensitivity to perturbations in I; it is what is called a “condition number”
in Numerical Analysis.

Note that κ and the expressions on the left-hand sides of Eqs. (S22) and (S24) are of
a similar nature. However, in Eqs. (S22) and (S24), we considered absolute, not relative
changes in Ts. In Eqs. (S22) and (S24), Ts is expected to be small, since it is the delay be-
tween the excitatory spike volley and the response of the inhibitory cells; therefore relative
changes in Ts are less informative than absolute ones. Similarly, in Eq. (S24), we consid-
ered absolute, not relative changes in I because we thought of I as small. Here we think of
neither TP nor I as small, and therefore consider relative changes in both TP and I.
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Panel A of Fig. S2 indicates that the PING period never varies very rapidly with h (that
is, with g). Thus as long as inhibition is strong enough to cause approximate synchro-
nization in a single pulse (h ≥ 0), heterogeneity in g should be expected to have moderate
effects only. Panel B shows that the sensitivity measure κ is nearly independent of h, and
becomes somewhat larger only when J gets small, i.e., when drive to the E-cell is near
the firing threshold. (Panel A shows that in that case, the PING period is around 40 ms,
corresponding to a 25 Hz oscillation, at the lower edge of the gamma range.)

F. The rhythm in the I-cells in Fig. 7C is an ING-rhythm. In Fig. 7C, there is a clear
rhythm in the I-cells. We noted earlier that this is an ING-rhythm. Figure S3 confirms this
point. Panel A of the figure shows a closeup of Fig. 7C (only spike times of 10 E-cells and
10 I-cells are shown), demonstrating that there is a rhythm in the I-cells. Panel B is the same
as A, but with the I-to-I-synapses removed. Rhythmicity is clearly much reduced, although
a remnant of rhythmic behavior still appears to be visible in the I-cells. We believe that this
is an accidental finite-network-size effect. In fact, if we perform the same simulation in a
twice larger network (Panel C), there appears to be yet less rhythmicity than in Panel B.

20

A

20

B

400 420 440 460 480 500

40

C

t [ms]

Figure S3: The rhythm in Fig. 7C is ING. A: Closeup of Fig. 7C (10 E-cells and 10
I-cells), demonstrating that there is a rhythm in the I-cells. B: Same as A, with the I-to-
I-synapes removed. C: Same as B, with network size doubled. Although the simulated
network was twice larger in panel C, the number of neurons for which spike times are
displayed is the same (10 E- and 10 I-cells) in all three panels.

G. The “membrane time constant” of the integrate-and-fire neuron. For the analysis
in Supporting Information D and E, it is essential that the parameter τ in the integrate-and-
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fire model (S13), (S14) not be very small. One might think of τ as the “membrane time
constant”. However, τ also governs the nature of the dependence of the intrinsic firing
frequency of the integrate-and-fire neuron on I. We will argue here that for τ� 10 ms, that
dependence becomes unreasonably sensitive.

The intrinsic period of the integrate-and-fire neuron defined by Eqs. (S13) and (S14) is

T = τ ln
τI

τI−1
. (S28)

With brief and straightforward calculations, Eq. (S28) implies

I =
1
τ

eT/τ

eT/τ−1
(S29)

and
dT
dI

=−eT/τ

I2 .

To measure how sensitively T depends on I, it is natural to divide the relative change dT/T
in T by the relative change dI/I in I, obtaining a “condition number”, as in Supporting
Information E:

dT/T
dI/I

=
I
T

dT
dI

=−eT/τ

IT
. (S30)

Using Eq. (S29) in Eq. (S30), we find:

dT/T
dI/I

=−eT/τ−1
T/τ

. (S31)

The absolute value of the right-hand side of Eq. (S31) grows rapidly as T/τ increases,
as shown in Fig. S4. For instance, if T/τ = 5, a 1% increase in I causes a decrease in T by
approximately 30%, according to this analysis. (The analysis is approximate because it is
based on infinitesimal perturbations dI of I.)

In neuroscience, one is typically interested in neurons that spike with intrinsic periods
T of several tens of milliseconds. If τ� 10 ms, then the dependence of T on I becomes
extremely sensitive for values of I that yield intrinsic periods of this order of magnitude.

Our analysis reflects a flaw of the integrate-and-fire model. In a more realistic neuronal
model, the membrane time “constant” (which typically is not a constant, but varies as con-
ductances vary) can be much smaller than 10 ms without there being any hyper-sensitivity
issue.
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