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Mathematical Description of OptCom 
Mathematical description of OptCom for the flux balance analysis of microbial 
communities requires definition of the following sets: 

 
K = {k | k = 1,2,…,K} = Set of microorganisms (or guilds) present in the 

community 
 
Jk = {j | j = 1,2,… } = Set of reactions in microorganism (or guild) k 
 
Ik = {i | i = 1,2,…, } = Set of metabolites in microorganism (or guild) k 
 

and = Set of metabolites that are exported or taken up by 
microorganism (or guild) k and are shared (exchanged) with other community members 
( ). 

 
= Set of the shared metabolites that are present in the extra-cellular 

environment and are shared (exchanged) among the community members. Note that for 
each metabolite in this set, there exists at least one corresponding metabolite in  or 

for some .  
 

We also, define the following variables and parameters using these sets: 
 
Variables: 

= Flux of reaction j in microorganism (or guild) k. 

= Export flux of metabolite  by microorganism (or guild) k . 

= Uptake flux of metabolite by microorganism (or guild) k . 

= Export flux of the shared metabolite  by the community. 
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= Uptake flux of the shared metabolite by the community. 
 
Parameters: 

= Stoichiometric coefficient of metabolite  in reaction . 
= Lower bound on reaction  in microorganism  (or guild) k. 
= Upper bound on reaction  in microorganism  (or guild) k. 

 
OptCom is a multi-level and multi-objective optimization problem, which can be 
represented as following: 
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Constraint (1) in the inner problems represents the steady-state mass balance for each 
microorganism (or guild) k. Constraint (2) imposes a lower and upper bound for each 
flux. Constraints (3) and (4) fix the uptake or export flux of a shared metabolite i at the 
values uval  and eval , respectively, which are imposed by the outer problem. This 
means that uval  and eval  serve as variables for the outer problem, but act as parameters 
for the inner problems. Constraint (5) in the outer problem establishes a mass balance for 
each shared metabolite  present in the extra-cellular environment (shared 
metabolite pool), where the terms  and  represent the total uptake and 

export of the shared metabolite i by community members, respectively. This constraint is 
the key equation modeling the interactions and communications among participants of 
the community (through exchanging or sharing metabolites). Any other microorganism or 
community related conditions can be readily incorporated into the OptCom formulation 
through addition of appropriate constraints to the inner or outer problems, respectively. A 
pictorial representation of this formulation is given in Figure TS1.1. 
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Figure TS1.1- Graphical representation of the variables and equations defined in the OptCom 
formulation for a sample community composed of three microorganisms (guilds). In this figure i 
is a typical metabolite that is exchanged (shared) among community members. The community-
level objective function is assumed to be maximization of the total community biomass. 

 
The multi-level structure of the OptCom implies that the inner problems are integrated in 
the outer stage so as a community-level objective function is primarily optimized (e.g., 
maximization of the total community biomass), while the fluxes are further constrained 
(by the inner problems) to maximize an individual-level criterion (i.e., growth). Solution 
methods of the bilevel problems from [1,2] are used to convert the multi-level program of 
OptCom to a bilinear optimization problem by adding the constraints of the dual of each 
inner problem and setting the objective functions for the primal and dual problems equal 
to one another: 
 

€ 

Maximize                             z = Community - level objective
(e.g., total community biomass)                         

                 [OptCom]

subject to
 

 

 

 (1) 

 (2) 
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Here, , ,  (not restricted in sign),  and  (non-negative) are the dual variables 
associated with the steady-state mass balance (constraint 1), uptake and export constraints 
(constraints 3 and 4) and right- and left-hand side inequalities in constraint (2), 
respectively. Equations (7) and (8) represent the dual constraints corresponding to uptake 
and export reactions for shared metabolites and the biomass reaction, respectively. 
Equation (6) is the dual constraint corresponding to all other reactions. Constraint (9) 
states that the objective functions of the primal and dual problems should be equal to 
achieve optimality (for inner problems). The bilinear formulation for OptCom is in 
general non-convex. It can be solved to optimality using the global optimization solver 
BARON [3]. Please note that problems with a few thousand bilinear terms in the 
constraints are typically solvable by BARON to global optimality. Given that the 
community members usually share only a limited number of metabolites the number of 
bilinear terms remain far below this limit for most cases. All examples presented in the 
manuscript were solved using this solver to achieve the global optimum. If an alternate 
nonlinear objective function for the inner problem such as minimization of the metabolic 
adjustment (MOMA) [4] deemed to be a better surrogate for cellular fitness, then instead 
of writing the dual constraints, one needs to write the Karush-Kuhn-Tucker (KKT) 
conditions for the inner problems (provided that they are convex).    
 

Determining the optimality levels using Descriptive OptCom 
In OptCom each species is assumed to maximize its own growth (i.e., in the inner 
problems). However, it happens quite often in microbial communities that individual 
microorganisms sacrifice in order to benefit other community member and improve an 
altruistic performance criterion. Therefore, individual species may grow at sub-optimal 
levels (e.g., 90% of the maximal growth rate) to benefit the entire population. This 
behavior can be identified and captured by OptCom through a modification of the 
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optimization structure presented above. The idea is to quantify the level of optimality of 
growth for each species in the community consistent with the set of available 
experimental data. To this end, we introduce a new metric called optimality level for each 
species k in the community (ck) that captures the deviation of individual species growth 
from their optimal behavior. Optimality levels can be determined upon incorporating all 
available experimental data related to the whole community (e.g., the biomass 
composition of the community) as constraints in the outer problem and any data related to 
individual microorganisms as constraints in the respective inner problems. This new 
mode of OptCom is called Descriptive OptCom and can be represented as following: 
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Constraint (10) allows the biomass flux for each microorganism (or guild) to be lower (ck 
< 1), equal (ck = 1), or higher  (ck > 1) than its optimum ( ). Note that  
for each species is community-specific and is computed in the context of all 
microorganisms strive to maximize their own growth (using the [OptCom] formulation 
described in the previous section). The optimality level for each microorganism is a 
variable and is determined by solving the Descriptive OptCom. An optimality level of 
less than one for a microorganism k implies that it grows sub-optimally at a rate equal to 
100ck % of the maximum (

€ 

voptbiomass
k ) to optimize a community-level fitness criterion 

while matching experimental observations. Alternatively, an optimality level of one 
implies that microorganism k grows exactly optimally at a rate equal to 

€ 

voptbiomass
k  
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whereas a value greater than one indicates that it achieves a higher biomass production 
level than the community-specific maximum (i.e., super-optimality) by depleting 
resources from one or more other community members. It is worth noting that super-
optimality for a species is achievable only at the cost of at least one other community 
member growing sub-optimally. Note that the presence of inner problems in Descriptive 
OptCom allows each species to still optimize its fitness (i.e., maximize its own biomass) 
as much as possible considering the available experimental data. However, once the 
optimality levels are determined (i.e., when the RHS of equation 10 is a constant) the 
inner problems can be replaced with their respective constraints and the problem is 
simplified to a single-level optimization problem, which can be used to provide further 
predictions about the community. 
 

Customizing OptCom for various types of interactions 
Here we consider various types of interactions among members of a microbial 
community and show how the general form of the OptCom can be customized for each 
case. The symbiotic interactions among two (or more) populations can be divided into 
two major categories: (i) positive interactions, where, one or more populations benefit(s) 
from the association, and (ii) negative interactions, where, one or more population(s) are 
negatively affected. All of these interactions can be modeled by customizing the inter-
organism flow constraints (i.e., constraint 5 in the OptCom formulation). In the following 
we present all formulations considering only two interacting populations, however, they 
can be easily extended to more than two populations using the general from of OptCom 
as a basis. A summary is provided in Table TS1.1. 

 

Mutualism 
In mutualism both partners benefit from each other and this association is vital for one or 
both of them. Mutualism can be further divided into the following two categories: 

 
1) Syntrophy: is a mutualistic relationship between two microorganisms, which 

together degrade an otherwise indigestible organic substrate. Here, the metabolite 
produced by one microorganism has to be consumed by the other in order to stimulate the 
growth of both species (see the first example in the manuscript for more details). Assume 
microorganism k1 produces a metabolite i, which inhibits its own growth but can be 
scavenged by its syntrophic partner k2 (see Figure S1.2A). Constraint (5) can then be 
written as following: 

 
 

 
This equation implies that the production and export rate of metabolite i by k1 is 
completely dependent on its rate of uptake by k2. 

 
2) Cross-talk: where the growth of each microorganism is dependent on the 

product(s) of the other. An example of cross talk is two auxotrophic strains of the same  
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Figure TS1.2- Pictorial representation of the customized OptCom for mutualism. (A) 

Syntrophy, (B) Cross-talk. 
 
 

species that grow on each other’s produced compounds [5]. Let assume microorganisms 
k1 and k2 have such a relationship, where, microorganism k2 takes up a metabolite i 
produced and exported by k1 and microorganism k1 grows on a compound i’ produced 
and secreted by k2 (see Figure TS1.2B). Constraint (5) for a mutualistic relationship can 
then be written as following: 
 

 

 

Synergism 
Synergism is similar to mutualism in that both partners benefit from each other, but a 
synergistic association is not obligatory and each microorganism is able to survive in the 
absence of the other, This is because the metabolites produced by a partner is not 
essential for growth of the other, or otherwise there exists an external supply of that 
metabolite. These will make the growth of both microorganisms independent of one  
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Figure TS1.3- Pictorial representation of the customized OptCom for synergism 

 
another, however, they still benefit from each other. If population k2 benefits from 
metabolite i produced by population k1 and k1 benefits from metabolite i’ produced by k2 
(see Figure TS1.3) then constraint 5 can be written as following to represent this 
relationship: 

 

 

 

Commensalism 
Commensalism is a type of association where one of the microorganisms benefits from 
association, while the other remains unaffected (e.g., see [6]). This association is usually 
not obligatory for the two populations involved. Assume as an example, microorganism 
k2 benefits from a metabolite i produced and exported by microorganism k1 (see Figure 
TS1.4). Constraint (5) for this case can be written as following: 

 
 

 
Note that since population k1 is not affected by population k2 in this case, one may 
remove the inner problem for k1 and move all its constraints to the outer problem (i.e., 
OptCom is simplified to a bilevel optimization problem with a single inner problem). 
However, more caution should be exercised in this case when choosing the objective 
function of the outer problem as maximization of the total community biomass may cause 
population k1 to grow sub-optimally in the interest of increasing sum of the biomass 
fluxes (i.e., community biomass). To avoid this,  in the objective function of the 
outer problem should be replaced with  (  is a small value), or alternatively a 
separate inner problem should be considered for k1 (Figure T$1.4).  
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Figure TS1.4- Pictorial representation of the customized OptCom for commensalism 
 

Parasitism 
Parasitism is a type of negative association, which is advantageous to one of the 
populations but is harmful to the other (i.e., host). This negative effect may be 
destructive, where the host cell is completely destroyed in its later stages of development, 
or balanced, where demands from the host are in such a way that it is not destroyed and 
continue to live [7]. Assume microorganism k1 acts as a host for microorganism k2 
through supplying metabolite i to it (see Figure TS1.5). Constraint (5) for this case can be 
written as following: 

 
 

 
Since microorganism k2 imposes an extra burden on the host (i.e., k1) to produce the 
metabolite i, it will not be able to grow at its maximum rate. Therefore, an appropriate 
objective function for the outer problem is to maximize only the biomass flux of k2. This 
implies that a higher growth rate for k2 has a higher priority in this community. We note 
that if any experimental data is available about the composition of the biomass in such 
communities (i.e., where both species can co-exist), we can use the Descriptive OptCom 
to determine the optimality level of the host.  

 



 10 

 
Figure TS1.5- Pictorial representation of the customized OptCom for parasitism. 

Competition 
Competition is a negative interaction between two (or more) microorganisms that may 
affect both populations in terms of their growth or survival. Usually, in these associations 
the microbial populations compete for limiting resources. The outcome of this 
competition may be the dominance of one population over the other (while they both 
continue to live) or complete removal of unsuccessful competitor(s) (e.g., see [8]). 
Assume populations k1 and k2 compete for a limiting substrate i (see Figure TS1.6). In 
this case the inter-organism flow constraint (constraint 5) can be adjusted as following to 
model the competition: 

 
 

Note that when two or more microorganisms compete for a limiting resource they may 
act quite selfishly and a community-level criterion such as maximization of the total 
community biomass might not be biologically relevant anymore. Which microorganism 
will dominate at steady state in this selfish competing community is largely dependent on 
the ability of individual players to uptake the limiting substrate efficiently. If this 
efficiency information for each microorganism is available (e.g., from kinetic data) it can 
be incorporated into the OptCom formulation by assigning appropriate weights to  
and in the above equation. In this case maximizing the total community biomass 
can be a satisfactory objective function for the outer problem from a mathematical point 
of view. In the absence of this additional information, OptCom can be used only to 
explore the space of all possible physiological outcomes at steady state. 

 

 
Figure TS1.6- Pictorial representation of the customized OptCom for competition. 
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Table TS1.1- A summary of different types of interactions in microbial communities and the way 
OptCom should be customized for each case. Here k1 and k2 refer to two interacting populations. 
In addition i and i’ refer to metabolites produced by k1 and k2, respectively. 
 
Type of 
interaction Description Customized form of constraint (5)  

Mutualism 
(Syntrophy)  

Positive and obligatory: Metabolite i 
produced by k1 has to be consumed by k2 
to stimulate the growth of both species  

 

Mutualism  
(Cross-talk) 

Positive and obligatory: k2 takes up 
metabolite i produced by k1 and k1 grows 
on compound i’ produced by k2. 

 

Synergism 

Positive but not obligatory: k2 benefits 
from metabolite i produced by k1 and k1 
benefits from metabolite i’ produced by 
k2. Metabolites i and i’ are not essential 
for growth of k2 and k1, respectively, or 
otherwise, they can be obtained from an 
external source.  

 

Commensalism 

Positive but not obligatory: k2 benefits 
from metabolite i produced by k1, 
however, k1 is not affected by k2. 
Metabolite i is not essential for growth of 
k2, or otherwise, it can be obtained from 
an external source. 

 
One may move the constraints for 
k1 to the outer problem and use 

 as the objective 
function for the outer problem (  
is a small value). 

Parasitism 
Negative: k1 acts as a host for k2 through 
supplying metabolite i to it. k1 is 
negatively affected, while k2 benefits. 

 
Maximize  as the outer-
problem objective function 

Competition Negative: k1 and k2 compete for a limiting 
substrate i in the medium 

 
Assign appropriate weights to 

 and according to the 
efficiencies of k1 and k2 for uptake 
of i. 
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Update procedure for the metabolic model of 
Desulfovibrio vulgaris 
We used the input files of the FluxAnalyzer provided in the supplementary material of 
Stolyar et al [9] as the basis. This original model contains 86 reactions and 82 
metabolites. We realized that a number of reactions in this model are not co-factor 
balanced and there are also other compounds missing from the reaction equations. 
Therefore, we investigated all reactions in the model manually and fixed the erroneous 
reactions through comparing the reaction equation with the corresponding equation (if 
available) in the KEGG database (http://www.genome.jp/kegg/) or the Model Seed 
(http://www.theseed.org/models/). This analysis resulted in correction of 62 reactions. 
However, neither the original model nor the corrected one could support growth in 
presence of acetate or ethanol.  

 
We next queried the Model Seed to reconstruct a first-draft metabolic model for D. 
vulgaris. We found that this draft model could support growth only in the complete 
medium where all metabolites can be taken up. This was expected because the draft Seed 
model is only a preliminary reconstruction and requires at least ten additional curation 
steps [10] that should be done manually. Therefore, we decided to take advantage of both 
Stolyar’s model, which was constructed and curated manually, and the draft Seed model 
through combining them. To this end, we first included all reactions that are present in 
the draft Seed model but are missing in the corrected Stolyar’s model and examined if it 
can produce all required biomass precursors. We found that even in this case the model is 
not able to support growth in presence of any of the carbon sources mentioned above. 
Therefore, we employed the GrowMatch procedure [1] to identify additional reactions 
that need to be added to this integrated model from the KEGG database. This analysis led 
to identification of five new reactions that need to be added to the model. The presence of 
these reactions in the model was confirmed by performing a bi-directional protein-protein 
BLAST (i.e., BLASTp) analysis against D. vulgaris genome (a threshold of 10-20 was 
chosen for forward and backward expectation values). Notably, we also relaxed the 
irreversibility constraints on three existing reactions in the Stolyar’s original model. All 
these reactions were reversible in other metabolic models. In addition, we added 
additional transport and exchange reactions to the model whenever required. 

 
To work with a compact, yet efficient, representation of the D. vulgaris metabolism, we 
next included the new identified reactions from the KEGG in the model and solved a 
mixed-integer optimization problem to identify the minimum number of reactions from 
the draft Seed model that need to present in the corrected model to support growth in 
presence of lactate, acetate and ethanol. This analysis identified 32 reactions from the 
draft Seed model that should be kept in the model, where the rest can be removed. The 
final updated model contains 145 reactions and 119 metabolites. A brief comparison of 
the original Stolyar’s model and the updated model for D. vulgaris is given in Table 
TS1.2. The complete list of reactions as well as the details of modifications to the model 
is given in Table S1 (Excel file).  
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Table TS1.2- Comparison of the Stolyar’s metabolic model for D. vulgaris [9] and the updated 
model presented in this study. 
 
 Stolyar’s model [9] Updated model 
# of reactions 86 145 
# of metabolites 82 119 

Growth 
capabilities 

Cannot support growth in presence of 
acetate or ethanol as carbon source 

Supports growth in presence of 
acetate or ethanol as carbon 
source 
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