10 Years of Pathway Analysis: Current Approaches and Outstanding Challenges - Supplementary Notes Purvesh Khatri^{1,2,*}, Marina Sirota^{1,2}, Atul J Butte^{1,2,*}

1 Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305

2 Lucile Packard Children's Hospital, 725 Welch Road, Palo Alto, CA 94304

* E-mail: pkhatri@stanford.edu, abutte@stanford.edu

S1 Impact Factor Analysis

Impact Factor (IF) analysis [1, 2] combines both ORA and FCS approach, while accounting for the topology of the pathway. IF analysis computes Perturbation Factor (PF) for each gene in each pathway, which is a gene-level statistic, as follows:

$$PF(g_i) = \Delta F(g_i) + \sum_{j=1}^n \beta_{ji} \cdot \frac{PF(g_j)}{N_{ds}(g_j)}$$
(1)

In Eq. 1, the first term, $\Delta F(g_i)$, represents the signed normalized measured expression change (i.e., fold change) of the gene g_i . The second term in Eq. 1 accounts for the topology of the pathway, where gene g_j is upstream of gene g_i . In the second term, β_{ji} represents the type and strength of interaction between g_i and g_j . If g_j activates g_i , $\beta_{ji} = 1$, and if g_j inhibits g_i , $\beta_{ji} = -1$. Note that the PF of the upstream gene g_j is normalized by the number of downstream genes it interacts with, $N_{ds}(g_i)$. The second term is repeated for every gene g_j that is upstream of gene g_i .

After computing PF for each gene, pathway-level statistic, Impact Factor (IF), is computed using Eq. 2:

$$IF(P_i) = \log\left(\frac{1}{p_i}\right) + \frac{\left|\sum_{g \in P_i} PF(g)\right|}{N_{de}(P_i)} \tag{2}$$

In Eq. 2, the first term captures the significance of the given pathway P_i as provided by ORA, where p_i corresponds to the probability of obtaining a value of the statistic used at least as extreme as the one observed when the null hypothesis is true. Because IF should be large for severely impacted pathways (i.e., small p-values), the first term uses $1/p_i$ rather than p_i . The log function is necessary to map the exponential scale of the p-values to a linear scale in order to keep the model linear. The second term sums up the values of the PFs for all genes g on the given pathway P_i , and is normalized by the number of differentially expressed genes on the given pathway P_i .

Note that Eq. 1 essentially describes the perturbation factor PF for a gene g_i as a linear function of the perturbation factors of all genes in a given pathway. Therefore, the set of all equations defining the PFs for all genes in a given pathway P_i form a system of simultaneous equations. Expanding and re-arranging Equation 1 for all genes g_1, g_2, \ldots, g_n in a pathway P_i can be re-written as follows:

$$\begin{pmatrix} PF(g_1) \\ PF(g_2) \\ \cdots \\ PF(g_n) \end{pmatrix} = \begin{pmatrix} 1 - \frac{\beta_{11}}{N_{ds(g_1)}} & -\frac{\beta_{21}}{N_{ds(g_2)}} & \cdots & -\frac{\beta_{n1}}{N_{ds(g_n)}} \\ -\frac{\beta_{12}}{N_{ds(g_1)}} & 1 - \frac{\beta_{22}}{N_{ds(g_2)}} & \cdots & -\frac{\beta_{n2}}{N_{ds(g_n)}} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ -\frac{\beta_{1n}}{N_{ds(g_1)}} & -\frac{\beta_{2n}}{N_{ds(g_2)}} & \cdots & 1 - \frac{\beta_{nn}}{N_{ds(g_n)}} \end{pmatrix}^{-1} \begin{pmatrix} \alpha(g_1) \cdot \Delta E(g_1) \\ \alpha(g_2) \cdot \Delta E(g_2) \\ \cdots \\ \alpha(g_n) \cdot \Delta E(g_n) \end{pmatrix}$$

After computing the PFs of all genes in a given pathway as the solution of this linear system, Eq. 2 is used to calculate the impact factor of each pathway. The impact factor of each pathway is then used as a score to assess the impact of a given gene expression data set on all pathways (the higher the impact factor the more significant the pathway).

References

- 1. Draghici S, Khatri P, Tarca AL, Amin K, Done A, et al. (2007) A systems biology approach for pathway level analysis. Genome Research 17: 1537–1545.
- 2. Khatri P, Drăghici S, Tarca AL, Hassan SS, Romero R (2007) A system biology approach for the steady-state analysis of gene signaling networks. In: 12th Iberoamerican Congress on Pattern Recognition, CIARP 2007. Valparaiso, Chile.