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S2 Feature comparison of the existing pathway analysis tools

Supplementary tables 1, 2 and 3 list some of the available tools for pathway analysis of high-throughput
data separated by class of method. Furthermore, commercial tools are arbitrarily excluded from the
comparison. We have also arbitrarily excluded some of the tools that provide identical functionalities.

S2.1 Gene-level Statistic

As shown in Tables 2 and 3, a large number of gene-level statistics have been proposed for ranking
individual genes before computing gene set statistic in FCS methods. Although the choice of a gene-level
statistic has been found to have negligible effect on identifying significantly enriched gene sets in simulated
data and real biological data [1], one should keep in mind that when the number of biological replicates
are few, a regularized statistic may be better. Furthermore, untransformed gene-level statistics failed to
identify pathways with both up- and down-regulated genes, in which case, transformation of gene-level
statistics (e.g., absolute values, squared values, ranks, etc.) is preferable [1, 2]. Another example of
gene-level statistics is using a linear model for obtaining two sample t-statistic instead of conventional
t-statistic [2]. When the sample size is large, a linear model can be complex to allow inclusion of more
variables and interactions [2].

S2.2 Gene Set Statistic

A gene set statistic can be multivariate [3–7] and account for interdependencies among genes, or univariate
[2, 8] and disregard interdependencies among genes. Irrespective of its type, the power of a statistic can
depend on the proportion of differentially expressed genes in a pathway, size of the pathway and amount of
correlation between genes in a pathway. On simulated data, Glazko et al. showed that irrespective of the
size of pathways and proportion of the differentially expressed genes in pathways, power of univariate and
multivariate test is most affected by correlations between genes in pathways, and is inversely proportional
to amount of correlation between genes in pathways [9]. Although at low correlations between genes,
all tests had similar power, at higher correlations, N -statistic (multivariate statistic) had more power
than other multivariate (Hotelling’s T 2, Dempster’s T1) and univariate (average absolute t-statistic,
average squared t-statistic) statistics. Hotelling’s T 2 test is expected to have low power when correlation
between genes in a pathway is high as Hotelling’s test is specifically designed to penalize correlation [1].
Furthermore, when correlations between genes are kept constant, power of these tests was proportional to
the size of pathways and proportions of genes differentially expressed on the pathways with multivariate
statistics performing better than univariate statistics [9].

Despite demonstrated higher power of multivariate statistics in simulated data, when applied to real
biological data, univariate statistics showed more power at stringent cutoffs (P -value ≤ 0.001), and
had equal power as multivariate statistics at less stringent cutoffs (P -value ≤ 0.05) [9]. Furthermore,
because different statistics test different hypotheses (e.g., N -statistic tests equality of two multivariate
distributions, where as average absolute t-statistic tests equality of means of two distributions), each
statistic identified a set of pathways that were not identified by the other statistics. The pathways
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uniquely identified by each statistics were true positives, suggesting that the number of false negatives
may be high for commonly used statistics [9]. Interestingly, only Hotelling’s T 2 was able to identify truly
differentially regulated pathways when the proportions of differentially expressed genes in the pathways
were low. On the other hand, a comparison of six gene set statistics, which did not include Hotelling’s
T 2, on simulated data found that each of them had difficulty in identifying those gene sets where only a
subset of genes were differentially expressed [1]. Taken together these results suggest that Hotelling’s T 2

has higher sensitivity when a small number of genes are differentially expressed in a pathway. Tables 2
and 3 lists the options available in the existing tools for gene set statistics.

S2.3 Assessing Statistical Significance of Pathways

The interpretation of the statistical significance of a pathway depends on the null hypothesis being tested,
which in turn is closely tied to sampling method employed [1, 8, 10]. The null hypotheses tested by the
current pathway analysis approaches can be broadly divided into two categories: i) competitive and ii)
self-contained null hypothesis. A competitive null hypothesis states that the genes in a given pathway
are at most as often differentially expressed as the genes not in the pathway, whereas a self-contained
hypothesis states that no genes in a given pathways are differentially expressed [1, 8, 10, 11]. In other
words, a competitive null hypothesis compares a set of genes in a given pathway with a set of genes
that are not in the pathway, whereas a self-contained null hypothesis ignores the genes that are not in
the pathway. Self-contained null hypotheses reject more null hypotheses (i.e., have more power) than
competitive null hypotheses as they are more restrictive [8, 10]. Though desirable, the higher power of a
self-contained null hypothesis can be problematic when there is a large number of differentially expressed
genes, as almost all pathways may be called significant. Furthermore, a self-contained hypothesis test is
a generalization of a single gene testing method by treating a gene set with single gene same as a gene
set with more than one gene, whereas, a competitive hypothesis treats a gene set with single gene very
differently from a gene set with more than one genes [10].

Another difference between the two hypotheses is their sampling units. A “sampling unit” refers to the
entity that will be used to repeat an experiment. A competitive null hypothesis samples genes, whereas
a self-contained null hypothesis samples subjects [8, 10]. A typical experiment measures the same genes
in a set of subjects. When repeating the experiment to reproduce the results, one would measure the
same set of genes in another set of subjects. Hence, in a typical experiment sampling units are subjects.
Consequently, using genes as sampling units turns a typical experiment design on its head. Therefore,
despite continued widespread use of gene sampling approaches in practice, a strong consensus has started
to form in the literature in favor of subject sampling (i.e., self-contained null) [1, 2, 8–10].

One of the most important differences between competitive and self-contained null hypothesis is the
inclusion of correlation structure in null hypothesis model. By randomly selecting genes for a given path-
way, competitive null disrupts the correlation structure between genes, and hence, ignores the correlation
structure between genes in null model. On the other hand, because self-contained null permutes subjects
and ignores the genes not in a given pathway, it includes the correlation structure between genes in null
model. One could argue that if the presence of correlation in measurements is not due to purely technical
or experimental reasons (e.g., unspecific hybridization or probe redundancy in case of microarrays), it
may be regarded as a biologically meaningful signal, which therefore should not be incorporated in the
random model for the null hypothesis. This argument is fundamentally flawed. We note that in any
high throughput experiment, not all molecules are expected to be different. For instance, when compar-
ing a cancer sample with a normal sample, many pathways (e.g., cell division) are not expected to be
affected. Consequently, the genes involved in these pathways will have some correlation between them,
although they may not be differentially expressed. In other words, there will always be some correlation
between genes and proteins in high throughput experiment data, and therefore, should be incorporated
in the random model. Inclusion of correlation structure in random model is another reason in favor of
self-contained null hypothesis as an appropriate test to identify significant pathways.
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Virtually all existing ORA approaches use 2 x 2 table methods [12] (Table 1), which test competitive
null hypothesis by comparing the proportion of differentially expressed genes in a pathway with the
proportion of differentially expressed genes not in the pathway. Because the input for the majority of the
existing ORA-based tools is a list of significant genes, without any expression data associated with the list,
there is no opportunity for subject sampling. On the other hand, FCS-based tools make use of all data
available from an experiment, which in turn provides opportunity for either subject or gene sampling.
All available FCS methods listed in Table 2 allow subject sampling (i.e., phenotype permutation).

S2.4 Correction for Multiple Hypotheses

Despite the generally accepted importance of correction for multiple hypotheses (see http://www.silicongenetics.
com/Support/GeneSpring/GSnotes/analysis_guides/mtc.pdf to understand the need for the correc-
tion), several ORA tools do not provide correction for multiple hypotheses, including GoMiner, FatiGO,
GenMAPP/MAPPFinder, and GOTM [12]. Tables 1, 2, and 3 list the choices available in existing tools
for multiple hypotheses correction. Among the available choices, Bonferroni, Sidak and Holm’s corrections
are very conservative, and not suitable when the number of pathways considered is large.

Recently, false discovery rate (FDR) is considered to be more appropriate. Because underlying distri-
butions of data are generally unknown, several variations of FDR with different assumptions have been
proposed in literature, which include Benjamini-Hochberg (BH) correction [13], Benjamini-Yekutieli (BY)
correction [14], positive FDR (pFDR) [15,16], adaptive Benjamini-Hochberg (ABH) [17], significant anal-
ysis of microarrays (SAM) [18], Storey’s q-value [15], and re-sampling based approaches [19–22]. Presence
of dependence in molecular measurements has been shown to affect power of FDR significantly [23]. Us-
ing random correlation matrices, Kim et al. compared seven different FDR methods by varying the
number of correlated genes and the strength of correlation [24]. Their results show that in the presence
of correlation BY is the most conservative FDR, whereas SAM and q-value overestimate FDR by 3 to
6%. BH and its variants (ABH, re-sampling based approaches) consistently underestimate FDR in the
presence of dependence. Furthermore, the strength of correlation between genes also has significant effect
on FDR [24].
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