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Alternative Models

Novelty and leaky integration in a Bayesian model

The two-stage model of evidence integration has two central features: (a) evidence undergoes a

leaky integration and (b) evidence values are read out and written into a bu�er at the o�set of

stimulus `B', but not after stimulus `A'. These features can be motivated by a Bayesian model,

which (a) shows that leaky evidence integration is a natural consequence when taking changing

stimulus identity into account and (b) generates novelty signals with suitable properties to trig-

ger the transfer into the bu�er.

Suppose that an observer is looking at a screen that shows a stimulus whose identity (I) may

change over time. At each time t, the stimulus induces a signal St in the visual system of the

observer. The task of the observer is to infer the identity of the stimulus.

We describe the perception process within a probabilistic framework, i.e. we represent the

current belief of the observer about stimulus identity by the probability p(I; t) that the signal St
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at time t is caused by a stimulus I. At stimulus onset (t = 0) the observer has no information

about its identity. All stimuli are equally likely, i.e. p(I; t = 0) = p�at is �at. As time progresses,

the observer gradually acquires knowledge on stimulus identity by integrating the evidence in

the signals. The posterior probability p(I; t) of the stimulus identity given the signal St at time t

is

p(I; t) =
p(St|I)p̃(I; t)∑
I p(St|I)p̃(I; t)

, (1)

where p̃(I; t) is a prior probability and p(St|I) is the likelihood of the signal St given stimulus

identity I. The likelihood p(St|I) represents the model of the environment that the observer has

acquired through previous experiences.

If we used in Eq. (1) the posterior p(I; t−∆t) at the last time step as a prior for calculating the

posterior at time t (i.e. p̃(I; t) = p(I; t−∆t)), the observer would perform a lossless integration of

information over time. Such a full temporal integration, however, makes the implicit assumption

that the stimulus identity remains constant at all times. In the face of changing stimuli, the

observer would interpret di�erent stimuli as one and thus come to erroneous conclusions. To

account for changes in stimulus identity, we introduce an additional stochastic variable N ∈

{new, old}, which signals if the current signal is �old�, i.e. if it corresponds to the current belief

so that the observer should continue the integration, or if it is �new�. In the latter case, a prior

p̃(I; t) = p(I; t −∆t) that re�ects previous evidence is not appropriate and should be replaced

by the �at prior p�at. This leads to a combined model

p̃(I; t) = p(I|new)p(new) + p(I|old)p(old) =

p�at(I)p(new) + p(I; t−∆t)p(old) .

(2)

Before we specify how p(new) is calculated, let us �rst show that this model introduces an in-

formation leak, similar to the low-pass properties found in the integration stage of the two-stage

model.
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The leaky evidence integrator. Until now, we assumed that signals arrive in the visual

system at discrete moments in time. Let us now consider the limit in which stimuli are presented

in continuous time: ∆t→ 0. To keep the amount of information in the signals �nite as ∆t→ 0,

the amount of information per time bin ∆t has to go to zero, i.e. the observer's model P (St|I)

has to become progressively less informative. The limit can be taken by using

P (St|I) =
1

N

[
1 +W (St|I)∆t

]
,

whereN is the number of possible signals andW (St|I) denotes an evidence rate, which is constant

as ∆t→ 0. The continuous dynamics of the posterior p(I; t) can be derived by expanding Eqs. (1)

and (2) in orders of ∆t and disregarding all terms of order (∆t)2. Taking the limit ∆t→ 0 yields

a nonlinear di�erential equation for the posterior:

d
dt
p(I; t) = −n(t) (p(I)− p�at(I)) +

W (St|I)p(I; t)− p(I; t)
∑
I′

W (St|I ′)p(I ′; t) .
(3)

Note that if it were not for the signal, the posterior p(I; t) would relax towards the �at prior p�at

with a time constant τ(t) = 1/n(t). We denote the relaxation rate n(t) as the novelty, because

it is related to the probability p(new) of the signal being new: n(t) = lim∆t→0 p(new)/∆t. Since

the signals become less informative as ∆t → 0, the probability p(new) decreases with ∆t such

that the novelty n(t) is well de�ned.

There are di�erent approaches to calculating p(new). In the absence of information on the

stimuli, we can assume that there is a characteristic time τ after which the observer typically

expects stimulus identity to change. The probability of a change within a short time window

∆t is then given by p(new) = ∆t/τ and the novelty n(t) = 1/τ is constant. This leads to a
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leaky evidence integration with a constant leak time constant τ , quite similar to the evidence

integration model in the main article (see stage 1 in the two-stage model in Figure 2F). Note

that for constant p(new), our model is equivalent to a hidden Markov model.

Novelty. A more elaborate approach to calculating p(new) is to use the likelihood to calculate

the probability that the current signal is in agreement with the current belief p(I; t−∆t) of the

observer. To this end, we again use the Bayesian approach and calculate the posterior

p(new|St) = p(St|new)p̃(new)/p(St),

where p̃(new) is a prior probability that the signal is new and p(St|new) and p(St) are calculated

using the probabilistic model:

p(St|new) =
∑
I

p(St|I)p(I|new) =
∑
I

p(St|I)p�at(I)

p(St|old) =
∑
I

p(St|I)p(I|old) =
∑
I

p(St|I)p(I; t−∆t)

p(St) = p(St|new)p̃(new) + p(St|old)(1− p̃(new)) .

To fully specify this model, we have to choose a prior p̃(new). Similar to the arguments in

Eqs. (2) and (3), we allow the observer to accumulate evidence on the novelty of the signal over

a given time interval τnew. To this end, we again use a mixed prior p̃(new) containing the old

posterior p(new|St−∆t) and a constant prior p0(new) = ∆t/τ . By taking the limit of continuous

time, we obtain a di�erential equation for the novelty n(t) at time t:

d
dt
n(t) = − 1

τnew

(
n(t)− 1

τ

)
+ [W (St|new)−W (St|old)]n(t) ,
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where W (St|new) and W (St|old) are de�ned by

W (St|new) :=
∑
I

W (St|I)p�at(I)

and

W (St|old) :=
∑
I

W (St|I)p(I; t) .

In essence, this model tracks the novelty by comparing the stimuli within a time window of

duration τnew with the current beliefs p(I; t) for the di�erent stimuli I. As long as belief and

signal are in agreement, W (St|new) < W (St|old) so that the novelty n(t) remains smaller than

1/τ . Consequently, the leak term in Eq. (3) is small and information is integrated over a long

time scale. When stimulus identity changes, there is a brief period in which the signals disagree

with the current belief: W (St|new) > W (St|old). As a result, the novelty n(t) increases and

p(I; t) relaxes more quickly towards the �at prior � previous evidence is forgotten.

Simulations. We simulated the case of 3 di�erent stimulus identities (stimulus A, stimulus

B and blank) and 3 di�erent signals (`A', `B' and `blank'). The fact that A and B are similar

is modeled by a relatively small di�erence in the evidence rates W (St|I) for stimuli A and B.

In contrast, the evidence rate W (St|I = blank) for blank vs. stimulus A or B is relatively high.

The evidence rates W (St|I) are given in Table 1. The time constants for novelty detection and

expected stimulus identity change are τnew = 1ms and τ = 50ms. We used a time discretization

of ∆t = 0.01ms, which is su�ciently small to ensure that the discretization has no in�uence on

the results.

The model can reproduce the central features of evidence integration in the psychophysical

experiments (Figure 2G) and generates novelty signals needed for the transfer to the bu�er of

the two-stage model (see Supporting Figure S2).
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Alternative one-stage models: Leaky drift-di�usion models

The dominance of the second stimulus suggests that the appropriate model must incorporate

an information leak. We tested whether the data can be explained by two di�erent versions

leaky one-stage model. In the �rst model, the dynamics of the decision variable X(t) is de-

scribed by dX = νdt + dW −Xdt/τ , where ν is the drift rate, dW is a Wiener process and τ

is the time constant of the leak. This drift-di�usion process is an Ornstein-Uhlenbeck process

with decision bounds. The drift rate ν = c′ · stim(t) depends on the stimulus stim(t) which

is +1 during the presentation of stimulus `A', -1 for stimulus `B', and 0 otherwise. The mag-

nitude of the drift rate is varied by setting c′ to di�erent values between 0.0 and 10 in steps of 2.5.

This model predicts increasing dominance of the �rst stimulus with increasing duration (Sup-

porting Figure S3A). We found no parameter for which the second stimulus dominates. Thus,

one-stage models with leaky evidence integration are not consistent with the experimental results.

As an alternative, we also tested a variant of the above model, in which the leak is removed

at the o�set of the stimulus, i.e. τ is �nite during the stimulus and increased to in�nity, τ →∞,

when it ends. For small noise and weak stimulus intensities, i.e. for small magnitudes c′ of

the drift, this is similar to using the output of a leaky stimulus integration as starting point

for a non-leaky di�usion process with zero drift. Such a model generates a dominance of the

second stimulus for intermediate stimulus durations: by the end of the stimulus, no decision

bound is reached, but � on average � the di�usion variable is closer to the decision bound for

the second stimulus, leading to bias in the decision (Supporting Figure S3B). For long stimuli,

this dominance breaks down, because the decision bound can be reached already during the

presentation of the �rst stimulus, leading to a dominance of the �rst stimulus.
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Two-stage model

For long stimulus durations, the two-stage model smoothly converts into a one-stage model. To

illustrate this, we studied the behavior of the model for long stimulus durations, where a one-

stage model would predict a dominance of the �rst stimulus or, for the intermediate duration of

160ms in our experiments, a weaker dominance of the second.

The model was �t to the data of experiment one. Fitting was done in two separate steps.

First, we �t the leaky integrator of stage one and the drift-di�usion process of the extended

two-stage model onto the reaction time distributions using the standard procedure to those con-

ditions in which we found the model to work reasonably well (i.e. 20-80ms total duration, but

not 160ms). Second, we keep the parameters found in the �rst step �xed and optimize Tstart

to �t the dominance across all conditions (i.e. 20-160 ms total duration). The �tting of Tstart

is done for each observer individually by minimizing the sum of the mean square error of the

dominance across conditions (range of tested Tstart: 0 ≤ Tstart − Tpre ≤ 120ms) using 10.000

repetitions.

The model indeed shows a weaker dominance of the second stimulus for large stimulus du-

rations (Supporting Figure S3C). It bears similarities to one-stage models using sensory pre-

processing [1]. However, there are two marked di�erences: First, one-stage models using sensory

pre-processing do not comprise a bu�er that allows informed decision making to continue after

the disappearance of the stimulus. Second, they start the drift-di�usion with stimulus onset

(i.e. Tstart = Tpre). However, without these features the decision variable moves towards the

decision bound for stimulus `A' before dropping back to chance level. The decision variable does

not continue towards the decision bound for stimulus `B'. Therefore, these models also show a

dominance of the �rst stimulus.
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Tables

Table S1. Evidence rates W (ST |I) in units of 1/ms.

stimulus `A' `B' `blank'
object A 4.08 3.92 -8.
object B 3.92 4.08 -8.

object blank -8. -8. 16.


