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Supplementary text

Mapping of cellular models onto the abstract model

Here we analyze how the abstract model of phyllotaxis emerges from the two main classes
of cellular models of auxin dynamics. In cellular models, the central zone is defined by an
enhanced auxin degradation or a reduced auxin synthesis, while growth results in the movement
of cells away from the centre. We start from the cell-level description of auxin dynamics and
polarization of the PIN1 auxin efflux facilitator, and obtain a continuous tissue-level description
of auxin dynamics, from which we deduce the parameters of the abstract inhibitory field model
(Fig. S1).

For simplicity (and with no lack of generality), we consider a one-dimensional line of cells,
indexed by an integer i. We note ai auxin concentration in cell i, p+

i (p−i , respectively) the PIN1
quantity facilitating efflux from cell i to cell i+ 1 (cell i to cell i− 1, respectively). Auxin flux
from cell i to cell i + 1 is the sum of a ‘diffusive’ part (of efficiency γD) accounting for auxin
diffusion between cells or its facilitated influx/efflux by non-polarly distributed proteins, and
of an ‘active’ part (efficiency γA) accounting for the effux facilitated by the polarly distributed
PIN1:

Ji>i+1 = γD(ai − ai+1) + γA(p+
i ai − p−i+1ai+1). (1)

The variation of auxin level in cell i is due to incoming and outcoming fluxes and to auxin
production (rate αa) and degradation (rate βa):

dai

dt
= Ji−1>i − Ji>i+1 + αa − βaai, (2)

where d/dt is the derivation with respect to time. aeq = αa/βa is the equilibrium auxin con-
centration in the absence of fluxes. Equations (1-2) need to be complemented with equations
relating PIN1 concentrations to auxin. Cellular models assume that PIN1 are polarized accord-
ing to concentrations in neighboring cells [1,2] or to the flux of auxin [3], as will be stated more
explicitly below.

Concentration-based

We use the formulation of [2], where auxin in a cell i promotes recruitment of PIN1 in the plasma
membranes (of neighbouring cells) that are oriented towards cell i. Assuming PIN1 cycling to
be faster than auxin dynamics, this leads to

p±i = P
ai±1

κ+ (ai−1 + ai+1)/2
, (3)
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P being the total PIN1 amount per cell (assumed to be the same for all cells) and κ represents
a characteristic difference in auxin concentration for polarization — the ratio of the equilibrium
auxin concentration aeq = αa/βa to κ measures cell polarizability.

The continuous limit of this model was obtained in [4], assuming that auxin gradients occur
over many cells and that auxin fluctuations are not too large. The principle is to introduce a
continuous auxin field a(x, t) such that ai(t) = a(i`, t), x being the spatial coordinate and ` cell
length, and to expand equations (1-3) in powers of `. This leads to a partial differential equation
for g(x, t) = a(x, t)− aeq [4],
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where all additional parameters are related to the cell-level parameters:

H = `2(γAPa
2
eq/(κ+ aeq)2 − γD),

M = `4γAPa
2
eq/(κ+ aeq)2/4,

K1 = 2`2γAPκaeq/(κ+ aeq)3,
and K2 = `4γAPa

2
eq/(κ+ aeq)3.

When polar transport is sufficiently more efficient than diffusion, more precisely when H2 >
4Mβa, then the uniform solution g(x, t) = 0 (or a(x, t) = aeq) is unstable with respect to small
perturbations. This is the regime leading to phyllotactic positioning of auxin maxima [1, 2, 4].
The analysis of Equation (4) was performed in depth in [4]; we recall and derive all results
needed for the mapping to the abstract model. The spacing of auxin maxima corresponds to
the range of inhibition in the abstract model, and is given by d = 2π

√
2M/H, which extends

over a few cells, and decreases with the efficiency of polar transport. When auxin variations are
small, an approximate solution of Eq. (4) takes the form

g(x, t) = A cos(2πx/d) +B cos(4πx/d), with

A =
2M
√

(H2 − 4βM) (2H2 + βM)
H
√

(HK2 − 2K1M) (HK2 +K1M)
, B = −

M
(
H2 − 4βM

)
H (HK2 +K1M)

.

This form enables finding the other parameters of the abstract model. The threshold of inhibition
roughly corresponds to the ratio of the smallest auxin level (aeq − A − B) to the largest level
(aeq +A−B). Finally, the shallowness of the inhibitory field is directly given by the ratio B/A;
the larger this ratio, the steeper the inhibitory field.

We used the correspondences established above to draw in Fig. S1A the links between the
cellular, concentration-based model, and the abstract inhibitory field model.

Flux-based

We use the formulation of [3], where outcoming flux through a plasma membrane promotes
recruitment of PIN1 to this membrane. Assuming PIN1 cycling to be faster than auxin dynamics,
this leads to

p+
i = (κ φ(Ji>i+1) + αp) /βp, (5a)
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p−i = (κ φ(−Ji−1>i) + αp) /βp, (5b)

where φ(x) = x if x > 0 and else φ(x) = 0; κ measures the strength of the feedback of flux
on PIN1, and the ratio κ/βp measures the polarizability of PIN1 distribution; αp is the rate of
incorporation of PIN1 to the membrane, while βp is the rate of endocytosis of PIN1, so that
P = αp/βp is the ground level of PIN1 in a membrane.

Following the same methodology performed in [4] for the concentration-based model, we
obtained the continuous limit of this model, assuming that auxin gradients occur over many
cells. The principle is to introduce a continuous auxin field a(x, t) such that ai(t) = a(i`, t),
x being the spatial coordinate and ` cell length, and to expand equations (1,5) in powers of `.
This leads to a partial differential equation for a(x, t),

∂a

∂t
=

∂

∂x

(
D

1− a/ac

∂a

∂x

)
+ αa − βaa. (6)

This equation appears as a nonlinear diffusion equation (note that a < ac) with parameters

D = (γD + γAP ) `2, ac =
βp

γAκ
,

and an equilibrium auxin concentration aeq = αa/βa.
The parameters of the abstract inhibitory field have direct correspondences with the equa-

tions above. The range of inhibition corresponds to the characteristic length of auxin variations
d =

√
D/βa when auxin level is small (close to an auxin sink). In the model of [3], an initium

is created when auxin reaches a level higher than a threshold ω; this threshold of activation
is exactly the mirror image of the threshold of inhibition in the abstract model. Finally, the
steepness of auxin gradient is measured by the ratio ac/aeq; the larger this ratio, the steeper the
gradient.

We used these correspondences to draw in Fig. S1B the links between the cellular, flux-based
model, and the abstract inhibitory field model.
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