
Supplementary Text

Network structure and neural activity

We consider the two-layer network described in Figure 1a. We denote the time-
dependent activity levels in the two layers induced by a stimulus presentation
as ~L(t) and ~H(t), respectively, where t represents the number of time-points
since the beginning of the stimulus presentation. The evolution of activity in
the network is determined by the synaptic weights: Q denotes the matrix rep-
resenting the bottom-up weights and W(t) denotes the time-dependent matrix
representing the top-down weights. We use t to denote the time since the be-
ginning of the current stimulus presentation. As emphasized below, W also
changes over the timescale of multiple stimulus presentations but we omit the
stimulus presentation number here for simplicity in the notation. We assume
linearity in the responses (this assumption is relaxed in the integrate-and-fire
simulations, see main text). Neuronal activity is initialized at time t = 0 by

an external stimulus ~L(0). At time t = 1, the higher level units are active as

a result of the initial lower level activity according to ~H(1) = Q~L(0). In the
next time-point, the lower-level units are active as a result of the higher-level
activity: ~L(2) = W(1) ~H(1), and so on. For later times, we can calculate the
activity in the layers at each time point:

~L(2t) =
[ t∏
t′=1

(
W(2t′ − 1)Q

)]
~L(0)

~H(2t+ 1) = Q
[ t∏
t′=1

(
W(2t′ − 1)Q

)]
~L(0) (A1)

Defining W0 ≡W(0), we approximate this activity as

~L(2t) ≈
(
W0Q

)t~L(0)

~H(2t+ 1) ≈ Q
(
W0Q

)t~L(0) (A2)

This will be a good approximation if a) activity decreases over time so that it
approaches zero for t � 1, and b) learning is slow, so that any net change in
W is negligible over the period when activity is large during a single stimulus
presentation.

Synaptic plasticity in the weights is determined from the neural activities during
the course of a stimulus presentation. For mathematical simplicity, we calculate
the weight changes due to an infinite set of time-points following each stimulus
presentation. The weight changes will be dominated by the effects of the early
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time-points, so long as activity decreases over time. We consider joint activity
in the two layers in pairs of adjacent time-points (in the integrate-and-fire sim-
ulations this simplification is relaxed, see main text). In our initial analyses,
we fix Q and we study the changes in W. (As discussed in the main text,
this is consistent with studies that suggest that top-down connections develop
after bottom-up ones; in Figure 6 we explore the consequences of simultane-
ously changing Q and W.) Focusing on the top-down connections, we consider
both higher layer (pre-synaptic activity) preceding lower layer (post-synaptic)
activity (∆t = +1) and post-synaptic activity preceding pre-synaptic activity
(∆t = −1). The top-down weights evolve according to the following simplified
version of spike-timing dependent plasticity (STDP) rule:

∆W = µ

∞∑
t=0,2,4...

(
−α~L(t) ~H(t+ 1)ᵀ︸ ︷︷ ︸

∆t=−1

+ ~L(t+ 2) ~H(t+ 1)ᵀ︸ ︷︷ ︸
∆t=+1

)
for cSTDP (A3)

∆W = µ

∞∑
t=0,2,4...

(
~L(t) ~H(t+ 1)ᵀ︸ ︷︷ ︸

∆t=−1

−α~L(t+ 2) ~H(t+ 1)ᵀ︸ ︷︷ ︸
∆t=+1

)
for rSTDP (A4)

where µ is the learning rate and α controls the relative bias of potentiation
and depression and ᵀ denotes the transpose operation. We note that this is a
simplified and idealized version of STDP. Instead of weight changes that show
an exponential dependence on ∆t, here we use a step function and the weight
changes only depend on activity in adjacent time points. A more realistic version
of STDP is used in the integrate-and-fire simulations (see main text) but this
idealized version captures the main aspects of STDP learning rules.

For simplicity, these two equations can be combined into the single equation

∆W = ν

∞∑
t=0,2,4...

(
~L(t) ~H(t+ 1)ᵀ − ρ~L(t+ 2) ~H(t+ 1)ᵀ

)
(A5)

ν, ρ =

{
−µα, 1/α for cSTDP

µ, α for rSTDP
(A6)

Here ρ represents the ratio of strengths of plasticity from pre-post synaptic
spike pairs (∆t = +1) versus plasticity from post-pre synaptic spike pairs (∆t =
−1).

We are interested in the evolution of the weights over many stimulus presen-
tations. Let N represent the number of stimulus presentations. Plugging in
the expressions for ~L(2t) and ~H(2t + 1) into Equation (A5), we consider the
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changes in W(N) in a single stimulus presentation, expressed as dW(N)/dN .
These changes depend on the external stimulation through the input activ-
ity L0; here we average over all potential stimulus presentations by defining
CL0L0

≡ 〈~L(0)~L(0)ᵀ〉, the cross-correlation of input stimuli, describing the av-
erage joint activities in the lower areas during the first time-point. We obtain
the average weight change per stimulus presentation:

dW

dN
= ν(I− ρW0Q)

∞∑
t=0

(W0Q)t〈~L(0)~L(0)ᵀ〉(QᵀW0
ᵀ)tQᵀ

= ν(I− ρW0Q)

∞∑
t=0

(W0Q)tCL0L0
(QᵀW0

ᵀ)tQᵀ (A7)

where I is the identity matrix.

ρ > 1 is required to prevent explosion in neuronal activity
at fixed points

In order for the magnitude of weight changes given by our learning rule to be
finite, we need activity in the network to decrease during the course of a stimulus
presentation. If the network activity does not decrease over time, we can see that
Equation (A1) and (A2) do not converge and lead to runaway excitation. More
specifically, we see from Equations (A1) and (A2) that activity will decrease over
time only if all eigenvalues of W0Q have absolute value less than one. This
condition is equivalent to requiring that the network have no strong excitatory
loops.

We now suppose that W∗ is a fixed point of the learning dynamics, such that
dW
dN |W=W∗ = 0. We define the matrix X ≡

∑∞
t=0(W∗Q)tCL0L0

(QᵀW∗ᵀ)tQᵀ.
We thus have

dW

dN

∣∣
W=W∗ = ν(I− ρW∗Q)X = 0 ⇒ W∗QX =

1

ρ
X (A8)

This is an eigenvalue equation, and it shows that W∗Q has one or more eigen-
value equal to 1/ρ. Because we have just argued that all eigenvalues of W∗Q
must have absolute value less than one, we conclude that our network can only
have fixed points with finite activity when ρ > 1. This observation applies
both for cSTDP and rSTDP. We recall that α was the parameter describing
the relative strengths of depression and potentiation. For rSTDP, ρ = α > 1
is the condition where depression dominates over potentiation. Conversely, for
cSTDP, ρ = 1/α > 1 is the condition where potentiation dominates.
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Reverse STDP is required for development of unchanging
top-down weights

By taking transposes of Equation (A8), and noting that QX = XᵀQᵀ, we see
that QXW∗ᵀ = 1

ρXᵀ, and thus that

(W∗Q)X(W∗ᵀQᵀ) =
1

ρ
W∗XᵀQᵀ =

1

ρ2
X (A9)

We then have

1

ρ2
X = (W∗Q)X(W∗ᵀQᵀ) =

∞∑
t=0

(W∗Q)(W∗Q)tCL0L0(QᵀW∗ᵀ)tQᵀ(W∗ᵀQᵀ)

=

∞∑
t=0

(W∗Q)t+1CL0L0
(QᵀW∗ᵀ)t+1Qᵀ

=

∞∑
t=1

(W∗Q)tCL0L0
(QᵀW∗ᵀ)tQᵀ (A10)

This is X, minus the t = 0 term in the sum! Therefore,

(1− 1

ρ2
)X = CL0L0

Qᵀ (A11)

We thus see that CL0L0Q
ᵀ is a scalar multiple of X. From Equation A8, then,

we know that

W∗QCL0L0
Qᵀ =

1

ρ
CL0L0

Qᵀ (A12)

and also that

(W∗Q)CL0L0Q
ᵀ(W∗ᵀQᵀ) =

1

ρ2
CL0L0Q

ᵀ (A13)

When QCL0L0Q
ᵀ is invertible, we can solve directly for the fixed point:

W∗ =
1

ρ
CL0L0

Qᵀ(QCL0L0
Qᵀ)−1 (A14)

We now ask which types of networks can have attractive fixed points. We
perform a linear stability analysis by considering the case where the top-down
weights are a small distance E from a fixed point W∗:

dE

dN
=
dW

dN
= ν(I− ρ(W∗ + E)Q)

∞∑
t=0

((W∗ + E)Q)tCL0L0(Qᵀ(W∗ + E)ᵀ)tQᵀ

(A15)
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We calculate the weight changes to first order in E. The zeroth order terms
disappear, using the result from A12. We are left with the first-order terms. We
separate the parts which result from each of the three appearances of E in (A15)
into three distinct terms, written here on three lines. We introduce the index t′

to keep track of the different possible positions that E can take in the chains of
multiplications which result from the expansions of ((W∗ + E)Q)t:

1

ν

dE

dN
≈− ρEQ

∞∑
t=0

(W∗Q)tCL0L0
(QᵀW∗ᵀ)tQᵀ

+ (I− ρW∗Q)

∞∑
t=1

t−1∑
t′=0

(W∗Q)t−t
′−1EQ(W∗Q)t

′
CL0L0(QᵀW∗ᵀ)tQᵀ

+ (I− ρW∗Q)

∞∑
t=1

t−1∑
t′=0

(W∗Q)tCL0L0(QᵀW∗ᵀ)t
′
QᵀEᵀ(QᵀW∗ᵀ)t−t

′−1Qᵀ

(A16)

The third term is zero, from Equation A12, because each multiplication of
CL0L0

Qᵀ to the left by W∗Q simply introduces a factor of 1
ρ , which means

the term in the parentheses is zero. The first term becomes

−ρEQ

∞∑
t=0

(W∗Q)tCL0L0
(QᵀW∗ᵀ)tQᵀ = −ρEQ

∞∑
t=0

1

ρ2t
CL0L0

Qᵀ =
−ρ

1− 1
ρ2

EQCL0L0
Qᵀ

(A17)
Simplifying, again using Equation A12, we have

dE

dN
=ν

[
−ρ

1− 1/ρ2
I + (I− ρW∗Q)

∞∑
t=1

t−1∑
t′=0

1

ρt+t′
(W∗Q)

t−t′−1

]
EQCL0L0

Qᵀ

=

(
QCL0L0

Qᵀ ⊗±ν

[
−ρ

1− 1/ρ2
I + (I− ρW∗Q)

∞∑
t=1

t−1∑
t′=0

1

ρt+t′
(W∗Q)

t−t′−1

])
E

(A18)

The Jacobian matrix of our transformation, J, is just the term in the parenthe-
ses. The fixed point W∗ will be attractive if and only if the real parts of every
eigenvalue in J are negative. The eigenvalues of a Kronecker product are the
products of the eigenvalues of the components. Because QCL0L0

Qᵀ is positive
semi-definite, it cannot have negative eigenvalues. Therefore, the sign of the
eigenvalues of J will be determined by the eigenvalues of the bracketed term.
If the bracketed term has only negative eigenvalues, the fixed point W∗ will be
attractive. If it contains any positive eigenvalues, W∗ will be an unstable fixed
point and learning will be unstable.

We know from Equation A8 that W∗Q has at least one eigenvalue equal to 1/ρ.
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If we consider a corresponding eigenvector ~V , we see that

ν
[ −ρ
1− 1/ρ2

I +

∞∑
t=1

t−1∑
t′=0

(I− ρW∗Q)
1

ρt+t′
(W∗Q)

t−t′−1 ]~V
= ν

[ −ρ
1− 1/ρ2

I +

∞∑
t=1

t

ρ2t−1
(I− ρW∗Q)

]
~V

= ν
−ρ

1− 1/ρ2
~V (A19)

Therefore ν −ρ
1−1/ρ2 is an eigenvalue of the bracketed term in Equation (A18).

The sign of this quantity is equal to −sign(ν), since ρ > 0. Recall from our
learning rule that ν is positive for rSTDP but negative for cSTDP. Therefore,
for cSTDP, J will always have at least one positive eigenvalue and learning will
always be unstable.

By contrast, learning with rSTDP can be stable (although it is not guaranteed
to be.) For example, if Q is invertible, W∗ = Q−1/ρ = Q−1/α will be a fixed
point; plugging this in to Equation (A18) confirms that it is an attractive fixed
point. We show a numerical example of convergence to an attractive fixed point
in Figure 2, and summarize these result in Table 2.

We have shown that stable learning in our network requires a depression-biased
rSTDP rule.

For strong depression bias, learing minimizes reconstruc-
tion error

When the bias towards depression is strong, i.e. ρ� 1, Equation (A18) can be
simply approximated:

dE

dN
=
dW

dN
≈± νρE (QCL0L0

Qᵀ) = ±νρ(W −W∗) (QCL0L0
Qᵀ)

=± νρ
(

W − 1

ρ
CL0L0

Qᵀ(QCL0L0
Qᵀ)−1

)
(QCL0L0

Qᵀ)

=± ν (ρWQ− I) (CL0L0
Qᵀ) (A20)

We now define a reconstruction error as E = 〈||~L(0) − ρ~L(2)||2〉~L(0). A simple

calculation shows that

dE
dW

=
d

dW
〈||~L(0)− ρWQ~L(0)||2〉~L(0)

= 2(ρWQ− I)〈 ~L0
~L0

ᵀ
〉 ~L(0)

Qᵀ (A21)
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Remembering that CL0L0 = 〈 ~L0
~L0

ᵀ
〉 ~L(0)

, we see that the approximate learning

rule in (A20) performs gradient descent on the reconstruction error. This means
that our depression-biased rSTDP learning rule attempts to find the set of
feedback weights which do the best possible job at reconstructing the bottom-
up input. When the feedforward weight matrix Q is invertible, the network is
able to perfectly reproduce its input, and Equation (A14) becomes W∗ = Q−1.
The current result tells us that even when the Q is not invertible – which will
always be the case if there are fewer higher-layer neurons than lower-layer ones
– the network will still move towards the best possible reconstruction.

Reformulation of the learning rule for easy numerical im-
plementation

For ease of numerical implementation, we note that Equation (A7) can be sim-
plified by taking the eigendecomposition of W0Q, finding a diagonal matrix Λ
such that W0Q = BΛB−1. Defining the additional diagonal matrix K ≡ Λ⊗Λ,
we have

dW

dN
= ν(I− ρW0Q)B

( ∞∑
t=0

ΛtB−1CL0L0
B−1

ᵀ
Λt
)
BᵀQᵀ

= ν(I− ρW0Q)B
( ∞∑
t=0

Kt
)
B−1CL0L0

B−1
ᵀ
BᵀQᵀ (A22)

Because K is diagonal, the sum can be easily evaluated. If the diagonal en-
tries of K are {k1, k2, ...kN} and all have absolute values less than one, then∑∞
t=0 Kt is another diagonal matrix K′ with entries { 1

1−k1 ,
1

1−k2 , ...
1

1−kN }. We
thus have:

dW

dN
= ν(I− ρW0Q)BK′B−1CL0L0Q

ᵀ (A23)

This formulation avoids infinite sums, thus allowing for numerical evaluation.

Changing Q while holding W fixed

We consider changing bottom-up connections rather than top-down ones, mod-
ifying Q while holding W constant. The analysis is very similar, with

∆Q = ν

∞∑
t=0

(
~L(t) ~H(t+ 1)− ρ~L(t+ 2) ~H(t+ 1)

)
(A24)
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Note that that the identities of the pre-post versus post-pre neurons are re-
versed for bottom-up versus top-down connections, so the sign of learning is
switched:

ν, ρ =

{
µ, α for cSTDP

−µα, 1/α for rSTDP
(A25)

We again perform a linear stability analysis, expanding the learning rule to first
order near a fixed point Q∗:

1

ν

dE

dN
=

−ρ
1− 1/ρ2

WECL0L0
Q∗ᵀ

+ (I− ρWQ∗)

∞∑
t=1

t−1∑
t′=0

(
1

ρt+t′
(WQ∗)t−t

′−1WECL0L0Q
∗ᵀ
)

+ (I− ρWQ∗)

∞∑
t=1

(
(WQ∗)tCL0L0

Eᵀ(WᵀQ∗ᵀ)t
)

(A26)

In the cases where W is invertible, we have Q∗ = 1
ρW−1 and all terms but the

first are zero:

dE

dN
= ν

−1

1− 1/ρ2
WECL0L0

(W−1)ᵀ

(A27)

This is stable only when W has all positive or all negative eigenvalues and
ν > 0. For bottom-up neurons, ν > 0 corresponds to cSTDP. Therefore, at
least for invertible W, bottom-up synapses must be trained with cSTDP to be
stable.

Plasticity without reciprocal connections

We consider here the case where the lower and higher layers do not have feed-
forward connections between them. Instead, higher level neurons are activated
at time t = 1 through an external stimulus. The initial activity in the lower
level neurons is ~L0, and the activity in the higher level neurons is ~H. Both ~L0

and ~H depend on the specific stimulus being presented. Because we do not have
feedforward connections, the activity does not continue to reverberate past time
t = 2, when activity in the lower level neurons is given by
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~L = g(W ~H)

(A28)

Here, g(x) is a potentially non-linear neural activation function which deter-
mines the firing rate of each lower level neuron given its summed synaptic input.
We assume only that g rises monotonically, so that g′(x) ≥ 0 for any x.

The learning rule becomes:

∆W = ν
(
~L0
~Hᵀ − ρ~L ~Hᵀ

)
(A29)

Averaging over many stimulus presentations, we have

dW

dN
= ν

(
〈~L0

~Hᵀ〉stim − ρ〈g(W ~H) ~Hᵀ〉stim
)

(A30)

We define CLH ≡ 〈~L0
~Hᵀ〉stim, and W∗ as the solution to CLH/ρ = 〈g(W∗ ~H) ~Hᵀ〉stim.

We consider a weight matrix E which is very close to W∗, so that we can ap-

proximate g
(
(W∗ + E) ~H

)
≈ g(W∗ ~H) + g′E ~H, where g′ = dg(~x)

d~x |~x=W∗ ~H is the

diagonal Jacobian matrix of g evaluated at W∗ ~H. We note that because g is a
monotonically increasing function, g′ is positive semi-definite.

dE

dN
≈ −νρ〈g′E ~H ~Hᵀ〉stim

=
(
− νρ〈 ~H ~Hᵀ ⊗ g′〉stim

)
E (A31)

We were able to move E outside the average over stimulus presentations because
it is independent of the choice of stimulus. The Jacobian matrix of E, J, is just
the term in the parentheses. The fixed point W∗ will be attractive if and
only if the real parts of every eigenvalue in J are negative. Because ~H ~Hᵀ is
positive semi-definite, the entire term inside the angle brackets is also positive
semi-definite. Therefore, the sign of the eigenvalues of J are determined by the
sign of −νρ. Since we always have ρ > 0 and ν < 0 for cSTDP, in this case
we have only unstable fixed points. By contrast, rSTDP can have stable fixed
points.
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