
TEXT S2: MODEL TRAINING VIA GENERALIZED EM

Before discussing the training algorithm, we briefly recall the notation intro-
duced in the main text. We considered a mixture of five GSMs, defined on five
groups of variables that describe the responses of oriented linear filters to natural
images: one center group and four surround groups. The center group comprises
filters with orientations 0, 45, 90 and 135 degrees from vertical, all centered at the
same spatial location; each surround group comprises filters with equal orientation
(corresponding to one of the center orientations), located on a circle surround-
ing the center filters with radius 6 pixels (see Figure 3, main text). Associated
with each group is an independent, positive mixer variable ν for which we assume
Rayleigh distribution (Equation 3, main text). Associated with each linear filter
are a zero–mean Gaussian variable, and a GSM variable defined as the product of
the Gaussian times the appropriate mixer. We will denote by κ a nk-dimensional
vector of Gaussian variables for the center, where nk corresponds to the number
of orientations (i.e., 4) used for the center filters; and by Σ a matrix of Gaussian
variables for the surrounds, where each of the nk columns corresponds to a given
orientation of the surround filters, and each of the nS rows to a given position of
the surround filters (i.e., nS = 8). Similarly, the GSM variables describing the
responses of center filters are denoted by k, and those describing surround filters
are denoted by the matrix S. We then considered five assignment configurations
that define the structure of dependencies in each of the mixture components. The
first four, ξθ for θ ∈ ∆ = {0, 45, 90, 135}, comprise the cases where the center group
and the surround with orientation θ are co–assigned to a common mixer; the fifth
assignment configuration, ξ?, is the case where target and context groups are all
mutually independent, and therefore the Gaussians associated with each group are
multiplied by their own independent mixers. In the main text (Equation 4) we
derived the joint distribution of the center and surround RF variables under ξθ,
which we rewrite also here for convenience:
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The parameters to be estimated are the covariance matrices of the Gaussians (de-
noted by Θ .= {Ck, C0
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kS }) and the prior proba-

bilities of the assignment configurations (denoted by qθ
.= p(Ξ = ξθ), for θ ∈ ∆

and q? = 1 −
∑
θ∈∆ qθ, and collectively by ρ = {q0, q45, q90, q135, q?}); we use

a Generalized Expectation Maximization algorithm, namely Expectation Condi-
tional Maximization [1], where a full EM cycle is divided into several subcycles,
each involving a full E-step and a partial M-step performed only on one covariance
matrix.

E–step: In the E–step we compute an estimate (Q) of the posterior distribution
over the assignment variable, given the observed variables k,S and the previous
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estimates of the parameters (ρold,Θold), via Bayes rule:

Q(ξθ) = p(ξθ |k,S; Θold)(S2)

=
qθ,old p(k,S | ξθ; Θold)∑

φ∈∆ qφ,old p(k,S | ξφ; Θold) + q?,old p(k,S | ξ?; Θold)

and similarly for Q(ξ?).
M–step: In the M–step we maximize the complete–data Log Likelihood, namely:

f =
∑
θ∈∆

Q(ξθ) log [p(k,S, ξθ |Θ)] +Q(ξ?) log [p(k,S, ξ? |Θ)](S3)
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where the second line is obtained applying Bayes rule. The gradient of f w.r.t. the
parameters comprises four groups of partial derivatives:

(S4)
∂f

∂qθ
;

∂f

∂(CθkS)−1
;

∂f

∂(CθS)−1
;

∂f

∂(Ck)−1

Setting to zero the first term, we obtain the analytical solution for ρ̂ .= arg maxρ [f ]
after some simple algebra:

(S5) qθ = Q(ξθ)

The zeros of the other terms cannot be solved analytically, and we solved for the op-
timal covariance matrices using conjugate gradient descent. The explicit expression
for the second term of the gradient is obtained as follows:
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where, for better readability of the following equations, we denoted by z the vector
composed by the GSM variables associated with the center and the surround with
orientation θ. First, the numerator is:
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where the third and fourth lines are obtained integrating by parts and taking the
matrix derivatives, and the last line solving the indeterminate integrals. Eventually,
using equation (S1), the derivative is given by:
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The other components of the gradient are obtained in a similar way, and amount
to:
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where in this case z denotes only the surround filters with orientation θ; and
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To evaluate the training results, fig. 1 shows that after training the model the
distribution of the estimates of a Gaussian component (see Equation 10 of the main
text) is close to an ideal Gaussian with equal variance. In addition, the variance
dependency of a pair of center–surround filters - i.e. the bowtie shape in panel b
- is eliminated in the joint conditional distribution of the corresponding Gaussian
components (panel c).
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Figure 1. Evaluation of the parameters learned from natural
scenes. (a) Marginal histograms of: (black) the responses of the
central vertical RF (see main text, fig. 3) to natural images; (blue)
the expected values of the corresponding Gaussian component; and
(red) an ideal Gaussian with equal variance. (b) Conditional his-
tograms of the outputs of two linear RFs (the vertical central RF,
xc, and a vertical RF from the surround, xs) in response to nat-
ural images. (c) Conditional histograms of the expected values of
the corresponding Gaussian components. Gaussian estimates are
computed according to equation 10 (see main text), with the pa-
rameters learned from a database of natural scenes. In (b,c) pixel
intensity is proportional to probability, with larger values corre-
sponding to brighter pixels; each column is independently rescaled
to fill the range of intensities. Solid and dashed lines denote con-
ditional mean and standard deviation respectively.


