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Alternate cis-Regulatory Function Forms

Recall that the cis-regulatory functions used throughout the paper employ free concentrations of each
biochemical species, and are thus referred to as “free species” form (Eq. 1). This equation is shown in
the main text as Eq. 5.

< RNAP >=
KP [RNAP ]

1 +KP [RNAP ]
(1)

Free Energy Form

Because KP is a reflection of the Gibbs free energy of an interaction one may employ the fundamental
relation between association constants and Gibbs free energy (Eq. 2) to rewrite Eq. 1 in terms of ∆G [1].
Solving for KP and substituting the result into Eq. 1 yields Eq. 3.

∆G◦
P = −RTlnKP (2)

< RNAP >=
e

−∆G◦
P

RT [RNAP ]

1 + e
−∆G◦

P
RT [RNAP ]

(3)

Written in this form, the dependence of KP on temperature is laid bare, in turn highlighting the
necessity of completing experiments under isothermal conditions. The relationship between temperature,
Gibbs free energy, and enthalpy can also be leveraged to determine KP using calorimetry and other in
vitro methods [2, 3].

Use of the association constant and corresponding free energy to describe binding of proteins to a
single DNA site tacitly assumes that both are freely diffusing molecules at thermodynamic equilibrium.
In actuality, the promoter we designate as “DNA” is a single rigid molecule in each cell, and transcription
factors diffuse both freely and in one dimensional walks along DNA (see review, [4]). Ackers justifies the
equilibrium assumption by arguing that the protein binding reactions occur on a much faster time scale
than transcription and translation [1,5]. Thus, while the association constants are “apparent,” and may
not be the same as that measured in an in vitro system, they do have a physical interpretation and reflect
important properties of the promoters being modeled.

State Form

It is often experimentally challenging to disentangle the contributions of the free species from their
apparent association constants. In an experiment where one of these components is the independent
variable–for example, if the sequence of a transcription factor binding site were modified–one may be
able to discern individual components’ contributions. In most other circumstances it is convenient to
introduce a simplification where Kp and the concentrations of TFs are combined into a new variable
q [6,7]. In our basal promoter example we have only two states, free DNA represented by the 1, and one
additional state. Thus, we set q1 = KP [RNAP ] and Eq. 1 simplifies to Eq. 4, which contains only one
unknown variable.
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< RNAP >=
q1

1 + q1
(4)

Fitting this model does not allow one to separate the effects of the binding constants from the effects
of the concentrations of transcription factors. However this simplification of the model has fewer free
parameters to fit and still allows for a physical interpretation of how a particular cis-regulatory system
works.

Michaelis-like Functions with Basal Leak

To reconcile basal expression ambiguity, some groups [8–10] introduce a basal leak term, λ, to this
formulation (Eq. 5) such that basal transcription occurs even in the absence of transcription factors.

φmkt = λ+ (

m∏
i=1

Ai

n∏
j=1

Rj)c (5)

A second new term, c, is also needed to scale the contribution of the transcriptional regulators, such
that the maximum transcription rate, kt, is given by Eq. 6 [8–10].

kt = λ+ c (6)

As with the traditional Michaelis-like functions, the leak function can also be reconstituted as a
thermodynamic model. Consider a basal promoter in the Michaelis-like leak formulation. In a basal
promoter, transcription would not be influenced by an activator, for example (c = 0). Thus, production
simplifies to λ [9]:

φmkt = λ (7)

The production term for a basal promoter in the thermodynamic formulation is taken from Eq. 1.

φmkt =
Kp[RNAP ]

1 +Kp[RNAP ]
kt (8)

Then, setting these equal to each other,

λ =
Kp[RNAP ]

1 +Kp[RNAP ]
kt (9)

Substituting this definition of λ with Eq. 9 into a one activator model results in Eq. 10.

φmkt =
Kp[RNAP ]

1 +Kp[RNAP ]
kt +

θA[A]

1 + θA[A]
c (10)

Solving for c in Eq. 6 and substituting that into Eq. 10 results in Eq. 11 after simplification.
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φm =
Kp[RNAP ] + θA[A] +KpθA[RNAP ][A]

1 +Kp[RNAP ] + θA[A] +KpθA[RNAP ][A]
(11)

Recalling that the numerator of a thermodynamic model is a sum of terms that encode states capable
of transcribing while the denominator sums terms for all possible states, Eq. 11 shows that the leak model
allows all states to transcribe except the state “1”, where DNA is unbound (see Eq. 1). This includes the
state where activator is bound and polymerase is not bound, represented by the θA[A] summand. When
using a Michaelis-leak function one should be aware that this formulation implies that activators boost
transcription even in the absence of RNA polymerase.

Oligomerization with Hill Functions

Hill-modified Michaelis-like functions (Eqs. 12 and 13 correspond to Eqs. 26 and 27 respectively in the
main text):

Ai =
(θA[A])n

1 + (θA[A])n
(12)

Ri =
1

1 + (θR[R])n
(13)

A specific interpretation of the θA parameter allows Hill coefficients to encode oligomerization, an
application of extreme cooperativity [9]. Using the thermodynamic model, we will demonstrate the
relationship between integer-valued Hill functions and the corresponding oligomeric state of a DNA
binding protein. Our example is for n = 2 (dimers) but holds for higher integer n values.

Consider a promoter with a single binding site for a dimer activator. Written in the same way as
Eq. 1, the thermodynamic model for this situation is modeled in Eq. 14, where we make the Michaelis
framework assumption that activator is absolutely required for transcription:

φm =
[A2 ·RNAP ·DNA]

[DNA] + [A2 ·DNA] + [RNAP ·DNA] + [A2 ·RNAP ·DNA]
(14)

where A2 represents an activator dimer. Dimer binds to free DNA with an association constant KA2,

KA2 =
[A2 ·DNA]

[DNA][A2]
(15)

and dimer assembles from monomers with dimerization constant LA:

LA =
[A2]

[A]2
(16)

Binding of polymerase and dimer is modeled with a macroscopic binding constant βAP , which equals
the right hand side of Eq. 17 in terms of stepwise equilibrium constants:

βAP =
[A2 ·RNAP ·DNA]

[A]2[DNA][RNAP ]
= KPKA2LA (17)
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We showed previously how the [RNAP ·DNA] term becomes KP [RNAP ][DNA] (see Eq. 1). Making
the appropriate substitutions into Eq. 14, we resolve the complete thermodynamic model for a dimer
activator:

φm =
KPKA2LA[A]2[RNAP ]

1 +KP [RNAP ] +KA2LA[A]2 +KPKA2LA[A]2[RNAP ]
(18)

The polymerase binding term can again be factored out.

φm =
KA2LA[A]2

1 +KA2LA[A]2
KP [RNAP ]

1 +KP [RNAP ]
(19)

The right-most term is the basal promoter function and the term on the left is the activator function
which we can again compare directly to Eq. 12. By setting the right-hand-side of Eq. 19 equal to Eq.
12, we see that θ2A = KA2LA, the product of the dimerization constant and the dimer-DNA associa-
tion constant. Thus, while θA has no particular meaning, θ2A is a macroscopic binding constant that
describes the process of dimerization and DNA association. This exercise further emphasizes that the
Hill/Michaelis-like functions are thermodynamic models that operate under several key assumptions.
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