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1 Cell-type average correlations in random networks

1.1 Setup

Consider a network consisting of N cells, of which NE = fEN are excitatory, and NI = fIN
inhibitory. Synaptic connections between the cells are random, and the probability of a contact is p.
Additionally, the number of excitatory and inhibitory inputs to each cell (henceforth the in-degrees)
is fixed to pNE and pNI respectively. The strength of an excitatory connection, defined by the total
area under a post-synaptic potential, is GE/(pNE), and the strength of an inhibitory connection
is GI/(pNI). Excitatory and inhibitory inputs follow the time course described by the normalized
(unit-area) synaptic kernels with frequency domain representation F̃E and F̃I , respectively.

Under these conditions, the interaction matrix K̃ takes the form

K̃(ω) = Ã(ω)J̃(ω) where J̃(ω) =

(
GE
pNE

F̃E(ω)RNENE

GI
pNI

F̃I(ω)RNENI

GE
pNE

F̃E(ω)RNINE

GI
pNI

F̃I(ω)RNINI

)
, (1)

where, RN1N2 is an N1 ×N2 matrix of 0’s and 1’s, with pN2 randomly chosen non-zero entries on
each row. Note that entries of K̃(ω) are independent except within the rows of each block. Moving
forward, we will suppress dependencies on ω for notation. The derived expressions can be assumed
to hold for each ω.

In the following, E{·} is an average over realizations of the random adjacency matrices RXY .
We define µ̃X to be

µ̃X =
∑
k0∈X

E
{

J̃k1k0

}
= NXE

{
J̃k1k0

}
k0∈X

= NX

(
GX
pNX

F̃E

)
p

= GX F̃X

(2)

where we have used the subscript notation k0 ∈ X to denote that the cell with index k0 belongs
to class X = E or X = I. Note that the definition of µ̃X is independent of the index k1 chosen,
and may alternatively be defined as the same value via a simple sum without expectations as we
assumed in-degrees to be fixed. We also define µ̃ as

µ̃ =
∑
k0

E
{

J̃k1k0

}
= µ̃E + µ̃I = GEF̃E +GI F̃I .
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and µ̃c as

µ̃c =
∑
k0

E
{

J̃k1k0 J̃
∗
l1k0

}
= NEE

{
J̃k1k0 J̃

∗
l1k0

}
k0∈E

+NIE
{

J̃k1k0 J̃
∗
l1k0

}
k0∈I

= NE

∣∣∣∣ GEpNE
F̃E

∣∣∣∣2 p2 +NI

∣∣∣∣ GIpNI
F̃I

∣∣∣∣2 p2
=

1

NE
|µ̃E |2 +

1

NI
|µ̃I |2.

(3)

where the definition of µ̃c is independent of the indices k1, l1, so long as k1 6= l1. To understand
this calculation, as we sum over k0, we will sum over NE excitatory cells and NI inhibitory cells.
For each value of k0, conditioned on the type of cell being k0 ∈ X, the squared absolute value of
the matrix entry will be | µ̃XpNE

|2 with probability p2 (the probability both connections are “on”),
and zero otherwise.

1.2 Approximate independence of the entries of J

Consider a pair of cells with indices i, j in the random balanced network. The linear response
approximation to the correlation between cells i and j in the present network is

E
{

C̃ij

}
i∈X,j∈Y

= E
{

[(I − ÃJ̃)−1(I − Ã∗J̃∗)−1C̃0]ij

}
i∈X,j∈Y

= C̃0

∞∑
n,m=0

Ãn(Ã∗)mE
{

[J̃n(J̃∗)m]ij

}
i∈X,j∈Y

.
(4)

We will assume that this series converges.

The assumption of fixed in-degrees means that there are dependencies between the entries of J̃
inside each row of each block of the matrix which are absent in a fully random network. The matrix
consists of four blocks, corresponding to the pair types of pre- and post-synaptic cells (EE, EI, IE
and II). However, if the network is large and connections are relatively weak, then the entries of
the matrix J̃ are approximately independent. In particular, we will show that

N∑
k0,...,kn−1,l1,...,lm−1=1

[
E
{

J̃ikn−1 J̃kn−1kn−2 · · · J̃k1k0 J̃∗l1k0 · · · J̃
∗
jlm−1

}
−E
{

J̃ikn−1

}
E
{

J̃kn−1kn−2

}
· · ·E

{
J̃k1k0

(
J̃l1k0

)∗}
· · ·E

{(
J̃jlm−1

)∗}]
∼ O(1/N2)

(5)

where we have neglected the conditioning of the cell types of i, j for notation, though this condition-
ing may be assumed to always be present. This means that, to lowest order in 1/N , expectations of
powers of J̃ may be taken as if all entries of J̃ were chosen completely independently, and without

concern for the fixing of in-degrees. Note that the term E
{

J̃k1k0

(
J̃l1k0

)∗}
is not factored - these

two terms will not be approximately independent as they both involve a connection originating
from the same cell k0, meaning they will (when the connections are present) have the same value
for any k0. However, there is no need to assume their approximate independence, as when the sum
of these terms is taken across k0, the value is µ̃c for any k1, l1.
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1.2.1 Case 1: n = 1,m = 0

These values of n,m correspond to the correlating effects of direct synaptic interactions between
pairs of cells. In this case, we are just looking at E{Jij}. We have by definition

E
{

J̃ij

}
i∈X,j∈Y

=
µ̃Y
NY

, (6)

as the total amount of input from cells of class Y is µ̃Y , so that the expected impact of a single
connection is as stated.

1.2.2 Case 2: n = m = 1

These values of n,m correspond to the correlating effects of direct shared inputs to pairs of cells

in the network. In this case, we can find the exact value of E
{

[J̃J̃∗]ij

}
. First, suppose i 6= j, then

directly from the definition of µ̃c, we have

E
{

[J̃J̃∗]ij

}
i∈X,j∈Y

=

N∑
k=1

E
{

J̃ikJ̃
∗
jk

}
= µ̃c (7)

and if i = j, we find

E
{

[J̃J̃∗]ii

}
i∈X

=
N∑
k=1

E
{
|J̃ik|2

}
= NE

∣∣∣∣ GEpNE
F̃E

∣∣∣∣2 p+NI

∣∣∣∣ GIpNI
F̃I

∣∣∣∣2 p =
µ̃c
p

(8)

1.2.3 Case 3: 2 ≤ n� N,m = 0

These values of n,m correspond to correlating effects of directed chains between cells in the network.
Following Eq. (5) for terms of this form, we must examine sums of the form

N∑
k1,...,kn−1=1

[
E
{

J̃ikn−1 · · · J̃k2k1 J̃k1j
}
−E

{
J̃ikn−1

}
· · ·E

{
J̃k2k1

}
E
{

J̃k1j

}]
There will be Nn−1 terms in this sum and the number of terms which factor (and cancel)

will be at least the number of ways to pick different arrangements of n − 1 distinct integers from
1, . . . , i− 1, i+ 1, . . . , N , or P (N − 1, n− 1). If n� N , then P (N − 1, n− 1) = Nn−1 +O(Nn−2),
so that only O(Nn−2) terms do not cancel. Since each term is proportional to 1/Nn, the error
introduced by assuming independence of matrix entries when averaging is O(1/N2). Hence, to
leading order in 1/N , we find

E
{

J̃nij

}
i∈X,j∈Y

=

N∑
k1,...,kn−1=1

E
{

J̃ikn−1 · · · J̃k2k1 J̃k1j
}
i∈X,j∈Y

=
N∑

k1,...,kn−1=1

E
{

J̃ikn−1

}
· · ·E

{
J̃k2k1

}
E
{

J̃k1j

}
i∈X,j∈Y

+O(1/N2)

=

∑
kn−1

E
{

J̃ikn−1

} · · ·
∑

k1

E
{

J̃k2k1

}E
{

J̃k1j

}
i∈X,j∈Y

+O(1/N2)

= µ̃n−1
µ̃Y
NY

+O(1/N2).

(9)
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where in factoring the sum in the second-to-last equality, we used that the expectation of a single
connection depends only on the pre-synaptic cell (the second index). Similarly, we find that

E
{
Jm∗ij

}
i∈X,j∈Y = µ̃(m−1)∗

µ̃∗X
NX

+O(1/N2).

1.2.4 Case 4: 3 ≤ n+m� N, and n,m 6= 0

These values of n,m correspond to direct and indirect common input motifs in the network. A
sufficient condition for the terms to factor as in Eq. (5) is the independence of the matrix entries.
This will certainly be true if the entries come from different rows of J̃, i.e., if all of the second
indices in Eq. (5) have distinct second entries:

i 6= kn−1 6= kn−2 6= · · · 6= k1 6= l1 6= · · · 6= lm−1 6= j.

Note that since k0 does not appear as a row index, we do not need to condition on k0 (this leads
to the multiplicative factor N below). As previously mentioned, we also can not factor the term
involving k0 in Eq. (5) as, due to Dale’s principle, each neuron makes only positive (excitatory) or
negative (inhibitory) synaptic interactions, so that the values J̃k1k0 and J̃l1k0 are not approximately
independent in the same manner as other connections. The problem, then, is to select n + m − 2
indices distinctly, when they are being chosen from {1, . . . , N}\{i, j}. So long as n+m ≤ N , there
are P (N − 2, n + m − 2) ways to do this, where P (x, y) stands for the number of permutations
of y elements chosen from a pool of x without replacement. In addition, if n + m − 1 � N ,
then NP (N − 2, n + m − 2) ∼ Nn+m−1 +O(Nn+m−2). It follows that, out of the Nn+m−1 terms
comprising this sum, only O(Nn+m−2) do not cancel. Since each term in the sum is scaled by
1/Nn+m, this implies that the error is only O(1/N2).

In this case, we then have by the approximate independence of connections when n,m� N

E
{

[J̃n(J̃∗)m]ij

}
i∈X,j∈Y

=
N∑

k0,...,kn−1,l1,...,lm−1=1

E
{

J̃ikn−1 J̃kn−1kn−2 · · · J̃k1k0 J̃∗l1k0 · · · J̃
∗
jlm−1

}

=

N∑
k0,...,kn−1,l1,...,lm−1=1

E
{

J̃ikn−1

}
E
{

J̃kn−1kn−2

}
· · ·E

{
J̃k1k0 J̃

∗
l1k0

}
· · ·E

{
J̃∗jlm−1

}
+O(1/N2)

=

∑
kn−1

E
{

J̃ikn−1

}∑
kn−2

E
{

J̃kn−1kn−2

} · · ·
∑

k0

E
{

J̃k1k0 J̃
∗
l1k0

} · · ·
· · ·

∑
lm−1

E
{

J̃∗jlm−1

}+O(1/N2)

= µ̃n−1µ̃(m−1)∗µ̃c +O(1/N2),

(10)

Note that the approximation in Eq. (10) is not exactly valid if i = j, as the first and last terms are
no longer independent. However, the difference will be provably only O(1/N2) in this case, so the
approximation remains valid.
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1.2.5 Case 5: n,m not significantly smaller than N

Even though the above approximations are no longer valid when n,m are not significantly smaller
than N , the size of these terms will decay exponentially with an upper bound ∼ rn+m, where r
is the radius of the eigenvalue spectrum of the matrix ÃJ̃ [1]. The implicit assumption we make
is that by the time the above approximations start to fail, n,m are large enough so as to make
those terms insignificant. This radius generally will vary with ω, so we assume the existence of a
uniform bound less than r = 1 for all ω. From numerical investigation his seems to be a reasonable
assumption to make in general for the networks we consider.

1.3 Results

Applying Eqs. (6–10) to Eq. (4) yields the following expression when i 6= j

E
{

C̃ij

}
i∈X,j∈Y

= C̃0

[( ∞∑
n=1

Ãnµ̃n−1

)
µ̃Y
NY

+

( ∞∑
m=1

Ãm∗µ̃(m−1)∗

)
µ̃∗X
NX

+

 ∞∑
n,m=1

(Ãnµ̃n−1)(Ãm∗µ̃(m−1)∗)

 µ̃c

+O(1/N2)

= C̃0

( Ã

1− Ãµ̃

)
µ̃Y
NY

+

(
Ã

1− Ãµ̃

)∗
µ̃∗X
NX

+

∣∣∣∣∣ Ã

1− Ãµ̃

∣∣∣∣∣
2

µ̃c

+O(1/N2).

(11)

When i = j, an additional correction term enters at second order due to the fact that in the
random network, when computing the correlation between a neuron and itself, it does not share a
“random” amount of common input with itself, but a deterministic amount given by the in-degree
and strength of connections. Hence, the terms corresponding to common input are scaled upwards
in strength as seen in Eq. (8). Hence, when i = j, we have

E
{

C̃ii

}
i∈X

= C̃0

[( ∞∑
n=1

Ãnµ̃n−1

)
µ̃X
NX

+

( ∞∑
m=1

Ãm∗µ̃(m−1)∗

)
µ̃∗X
NX

+ |Ã|2 µ̃c
p

+

 ∞∑
n,m=1
n+m≥3

(Ãnµ̃n−1)(Ãm∗µ̃(m−1)∗)

 µ̃c

+O(1/N2)

= C̃0

[
1 +

(
Ã

1− Ãµ̃

)
µ̃X
NX

+

(
Ã

1− Ãµ̃

)∗
µ̃∗X
NX

+

∣∣∣∣∣ Ã

1− Ãµ̃

∣∣∣∣∣
2

µ̃c + |Ã|2µ̃c
(

1− p
p

)+O(1/N2)

(12)

2 First order conditioned averages in the random network

We may also approximate expected correlations for a pair of cells of a specified type conditioned
on their first-order (direct) connectivity in the random, fixed in-degree network to O(1/N2). The
calculations follow similar to the proofs for cell-type averages above with minor modifications.
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2.1 Leading order effects of conditioning

For a first example example, suppose are interested in the expected value of a single connection
originating from cell i conditioned on two excitatory connections Jij ,Jji (so the indices i, j refer to
excitatory cells we will assume to be distinct). We do not specify in our conditioning whether the
connections are present or not — only that we know their value. We may solve for the expectation
of an outgoing connection from cell i (with an identical conclusion holding for cell j):

E
{

J̃ai|J̃ij , J̃ji
}
i,j∈E,a

=
1

N

∑
a

E
{

J̃ai|J̃ij , J̃ji
}
i,j∈E

=

(
Probability that cell
a is excitatory

)(
Expected value of the connection

if a is excitatory

)
+

(
Probability that cell

a is inhibitory

)(
Expected value of the connection

if a is inhibitory

)
= fE

(
GE
pNE

F̃E

)(
p+

1− δJ̃ji,0
− p

NE

)
+ fI

(
GE
pNE

F̃E

)
p

=
µ̃E
NE

+
(1− δJ̃ji,0

− p)GE
pN2

=
µ̃E
NE

+O(1/N2)

(13)

where the subscript a denotes an average over all possible values of the index a, and the term(
p+ (1− δJ̃ji,0

− p)/NE

)
represents the fraction of connections cell i will make on to other exci-

tatory cells which are expected to be present. This will be greater or less than p, the connection
probability, depending on whether J̃ji is on or off. If it is on, for example, the expected number of
outgoing connections to excitatory cells which will be on is 1 + p(NE − 1), as unconditioned out-
going connections (i.e., J̃ki for k 6= j) are multiples of Bernoulli random variables. Note that the
first-order conditioned expected value coincides with the unconditioned expected value to leading
order in 1/N .

We also have that

∑
b

E
{

J̃ab|J̃ij , J̃ji
}
i,j∈E

= E

{(∑
b

J̃ab

)∣∣∣∣∣ J̃ij , J̃ji

}
i,j∈E

= µ̃ and

∑
b∈X

E
{

J̃ab|J̃ij , J̃ji
}
i,j∈E

= E

{(∑
b∈X

J̃ab

)∣∣∣∣∣ J̃ij , J̃ji

}
i,j∈E

= µ̃X

(14)

for any a, agreeing with the values of the same quantities found in the absence of conditioning on
connection values above. We have fixed the in degree so that the fact that certain connections are
present or absent has no bearing on the expected input to a particular cell.

We may also solve for the value of µ̃c when we condition on the first order connectivity of two
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excitatory cells:

µ̃EE,c = E
{

[J̃J̃T ]ij |J̃ij , J̃ji
}
i∈E,j∈E

=
N∑
k=1

E
{

J̃ikJ̃jk|J̃ij , J̃ji
}

=
∑
k 6=i,j

E
{

J̃ikJ̃jk|J̃ij , J̃ji
}

+ E
{

J̃iiJ̃ji|J̃ij , J̃ji
}

+ E
{

J̃ijJ̃jj |J̃ij , J̃ji
}

=
∑
k 6=i,j

E
{

J̃ikJ̃jk|J̃ij , J̃ji
}

+ J̃jiE
{

J̃ii|J̃ij , J̃ji
}

+ J̃ijE
{

J̃jj |J̃ij , J̃ji
}

= (NE − 2)

(
GE
pNE

F̃E

)2

pipj +NI

(
− GI
pNI

F̃I

)2

p2

+ J̃ij

(
GE
pNE

F̃E

)
pi + J̃ji

(
GE
pNE

F̃E

)
pj

where we define pi to be the probability that an excitatory connection k → i exists when k 6= j
conditioned on the value of J̃ij .This may be explicitly calculated as

pi =

{
pNE−1
NE−1 if J̃ij 6= 0
pNE
NE−1 if J̃ij = 0

with identical calculations holding for pj for the probability of an excitatory connection k → j
when k 6= i. In either case, it is easy to see that pi = p+O(1/N). Using this, we find that

µ̃EE,c = µ̃c +O(1/N2), (15)

so that this value is again unchanged, to leading order in 1/N , from the unconditioned case.

The previous results regarding the approximate independence of connections in this network
still hold. Equations (13-15) reveal that that, to leading order in 1/N , there will be no change
to the expectations of terms higher than first order as a result of conditioning on the values of
two excitatory connections. Hence, the only difference occurs at first order, where we are replacing
average connection values with known connection values (see Eq. (16) below). Also, note that we’ve
shown only the calculations for the excitatory-excitatory first order conditioned averages. However,
there is nothing unique about this case - the inhibitory-inhibitory and excitatory-inhibitory cases
may be solved likewise.

2.2 Results

If we condition on the connectivity and cell-type of two distinct cells in the random, fixed in-degree
network and average over pairs of this type, we find that

E
{

C̃ij |J̃ij , J̃ji
}
i∈X,j∈Y

= C̃0

[
ÃJ̃ij + Ã∗J̃ji +

( ∞∑
n=2

Ãnµ̃n−1

)
µ̃Y
NY

+

( ∞∑
m=2

Ãm∗µ̃(m−1)∗

)
µ̃∗X
NX

+

 ∞∑
n,m=1

(Ãnµ̃n−1)(Ãm∗µ̃(m−1)∗)

 µ̃c

+O(1/N2)

(16)
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3 Linear response for conductance-based model neurons

A more realistic model of neural activity is an IF neuron receiving noisy inputs and connecting to
other neurons via conductances [2]. Consider a network of N such model neurons with membrane
potentials evolving according to

Cm,iv̇i = −gL,i(vi − EL,i) + ψ(vi) + (fE,i(t) + gE,i(t))(EE − V ) + (fI,i(t) + gI,i(t))(EI − V )

gE,i = Cm,iaE,iSE,i(t)

gI,i = Cm,iaI,iSI,i(t)

(17)

where SE,i(t), SI,i(t) are independent Poisson spiking processes of rates λE,i, λI,i, respectively, which
account for inputs not explicitly modeled, aE,i, aI,i set the impact of a spike from these processes,
EE , EI are reversal potentials, and fE,i, fI,i account for excitatory and inhibitory synaptic conduc-
tance inputs from the modeled network. We again model the time course of synaptic coupling within
the network with alpha functions, and coupling strengths will now denote the total conductance
delivered (See main text).

We will adopt the usual diffusion approximation to the Poisson conductance inputs [3–7]. Under
this approximation, the excitatory conductance is

gE,i = Cm,i(µE,i + σE,iξE,i(t)),

where

µE,i = bE,iλE,i, σE,i = bE,i
√
λE,i, (18)

and bE,i = 1− e−aE,i (we use the Stratonovich interpretation of the terms V δ(t− t0) on the right
hand side of Eq. (17), see Stratonovich [8]). ξE,i is a Gaussian white noise process with 〈ξE,i(t)〉 = 0
and 〈ξE,i(t)ξE,i(t′)〉 = δ(t− t′). This approximation is valid in the limit

λE,i � 1 aE,i � 1.

Hence, the diffusion approximation of the system in Eq. (17) is

τiv̇i = −(vi − EL,i − ψ(vi)) + [fE,i(t)/gL,i + τi(µE,i + σE,iξE,i(t))] (EE − V ) + . . .

[fI,i(t)/gL,i + τi(µI,i + σI,iξI,i(t))] (EI − V )
(19)

The situation is not complicated much versus the case of current-based inputs and noise con-
sidered in the main text. With regards to the behavior of the single cell, by defining an effective
membrane time constant, rest potential and noise intensity

τ effi =
τi

1 + g−1L,i[〈fE,i〉+ 〈fI,i〉] + τi[µE,i + µI,i]

EeffL,i =
EL,i + EE(g−1L,i〈fE,i〉+ τiµE,i) + EI(g

−1
L,i〈fI,i〉+ τiµI,i)

1 + g−1L,i[〈fE,i〉+ 〈fI,i〉] + τi[µE,i + µI,i]

σeffi (v) =

√
τ effi

[
σ2E,i(EE − v)2 + σ2I,i(EI − v)2

]
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and rewriting Eq. (19), we have

τ effi v̇i = −(vi − EeffL,i − ψ(vi)) + (fE,i(t)− 〈fE,i〉)(EE − vi) + . . .

(fI,i(t)− 〈fI,i〉)(EI − vi) +

√
2τ effi σeffi (vi)ξi(t).

(20)

This is known as the effective time constant approximation [7, 9].

The main differences between the conductance-based case and the current-based case are that
fluctuations due to input from the modeled network now occur in conductances, and that the
noise variance now depends on the membrane potential . Also, the fluctuations of the excitatory
and inhibitory inputs must be considered separately (whereas in the current-driven case, the two
could be lumped together and we considered only the response to fluctuations in a single input
current). This necessitates the need for slightly different linear response. However, making use
of the framework established by Richardson [10], one can easily derive simple boundary value
problems which can be solved for the firing rate, uncoupled power spectrum, and firing rate response
for modulation of mean conductances of a cell receiving. Each cell now has two linear response
functions - one for response to modulation of the mean excitatory conductance (AE,i) and one for
response to modulation of the mean inhibitory conductance (AI,i). The kernel AE,i was derived in
analytical form by Richardson [11] for a very similar case.

Using the same iterative approach as in the main text, we can arrive at an approximation to
correlations in a recurrent network of conductance-coupled excitatory and inhibitory neurons:

C̃(ω) = lim
n→∞

C̃n(ω) = (I− K̃(ω))−1C̃0(ω)(I− K̃∗(ω))−1 (21)

where now we have
[K̃ij ]j∈X = WijÃX,iJ̃X,j (22)

Note that the necessity of two linear response functions does not cause any complication when
compared with the current-driven case considered in the main text. Excitation and inhibition
already had different synaptic kernels (even if only in sign). Excitatory response functions are
applied to excitatory cells, and likewise with inhibitory, so that the difference in excitatory and
inhibitory response functions reduces to an effective difference in coupling filters for inputs coming
from the two cell classes. We compare the results obtained from Eq. (21) for conductance-based
neurons with those obtained from Monte Carlo estimation of cross-correlations in Figure S1. We
confirm the match only for a small circuit here — further exploration would be required in order
to fully explore the accuracy of approximations in large networks.

4 The effect of autaptic connections in the all–to–all network

As stated in the main text, the difference in cross- and auto-correlations is minor in the all–to-all
network when autaptic connections are included or excluded (See Figure S2). The auto-correlations
show a larger absolute difference because omitting autapses corresponds to omitting the first order
term representing the effects of direct connections between a cell and itself. However, in this
particular network, the zeroth order terms dominated the auto-correlations, decreasing the relative
impact of the lost first order term, while in the cross-correlations, omission of autapses induced an,
at most, order 1/N difference in each term. As the correlations themselves are already order 1/N ,
the difference is order 1/N2, giving the small relative error we see.
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Figure S1. Estimating correlations via linear response in the presence of conductance
coupling. Comparison of the theoretical prediction with the numerically computed
cross-correlation between two reciprocally conductance-coupled excitatory cells. Parameters were
gL = 5.7 nS, Cm = 114 pF, EL = −75 mV, EE = 0 mV, λE = 5 kHz, aE = 0.004, EI = −90mV ,
λI = aI = 0, VT = −54 mV, ∆T = 1 mV, Vr = −57 mV, vth = 20 mV, τref = 2 ms.
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Figure S2. The effect of autaptic connections in the all–to–all network. A. Comparison
of theoretical predictions of the cross-correlations in an all–to–all network of size N = 100 with
(solid) and without (dashed) autaptic connections. Relative L2 error ≈ 0.0043. B. Same as panel
A, for auto-correlations. Relative L2 error ≈ 0.0016. All parameters are the same as in the
balanced all–to–all network of the main text.

5 Limits of the Theory

We have performed a thorough investigation of the limits of the theory. We started by investigating
when the theory fails to accurately predict a PSTH for a single cell. The idea is that if the theory
does not give accurate predictions for a single cell, then it should fail in a network. We then
investigated how well the theory predicts correlations in a complete network. The results are
described in the following text which has been added to the Supplementary Information:

Here we explore the limitations of the linear response theory. First, we examined the limits
of linear response theory in predicting time-dependent firing activity (the peri-stimulus time his-
togram, or PSTH) in the balanced, all–to–all network considered in Figure 6 of the main text.
We generated 100 realizations of Poisson spiking processes, each 2s in duration. We designated 80
to be excitatory and 20 to be inhibitory, to emulate the input received by a cell in the all–to–all
network. These point processes were convolved with weighted alpha functions (see Eq. (2) in the
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main text), and used to drive an EIF cell which was also receiving a white, fluctuating background
input. As in Figure 1 of the main text, we averaged over realizations of background noise to obtain
the time-dependent firing intensity of this post-synaptic cell. We quantified the agreement between
the result obtained by numerical simulation and the approximation obtained using linear response
theory by computing the Pearson correlation coefficient between the two. This was performed over
a range of input noise intensities and connection weights to obtain Figure S3A. In agreement with
the expectation that noise linearizes responses and improves the linear response approximation, the
agreement is best when noise is strong and connections weak, and worst for weak noise and strong
connections. Notably, for a large range of parameters, the linear response prediction of the PSTH
was quite good, with Pearson correlation coefficients above 80%.
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Figure S3. Evaluating the accuracy of linear response predictions of the PSTH and
of cross-correlations. A. The Pearson correlation coeffecient between the time-dependent firing
activity (PSTH) calculated from Monte Carlo simulations and linear response theory for an array
of σ (noise intensity) and GE (total excitatory/inhibitory connection weight) values for a single
EIF neuron receiving 80 excitatory and 20 inhibitory Poisson inputs at 17 Hz, convolved with
alpha synaptic kernels (see Eq. (2) in the manuscript). These inputs emulated the total drive
received by a neuron in the precisely balanced, all–to–all network considered in Figure 6 of the
main text. A higher correlation indicates a closer match between simulations and theory. The red
dot indicates the parameters used for Figure 6. B. The cross-correlation function between two
excitatory cells in the precisely balanced, all–to–all network from Monte Carlo simulations and
linear response theory at four points in (σ,GE) space, indicated by the black dots in panel A.

Approximating time-dependent firing activity (PSTH) is only a part of approximating net-
work correlations. Different network effects may limit the accuracy of the approximation given by
Eq. (15). We therefore compared numerically obtained cross-correlation functions with those given
by Eq. (22) at four points (indicated by black dots in Figure S3A). The results shown in Figure S3B
indicate that the trends in cross-correlations and PSTH approximation errors are similar. In par-
ticular, for connection strengths still stronger than those used in the paper (red dot), the match
between theory and simulations is excellent at both noise levels tested. However, in networks, large
connection strengths (over 10x those used in Figure 6 of the main text) can cause the approxima-
tion of cross-correlations to be worse than what would be expected from single cell activity. In
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particular, note that the relative L2 error1 between theoretical and numerical predictions was much
lower for cases (iii), (iv) when connection strengths were weak. Nevertheless, in the case of strong
connectivity (examples (i), (ii)), the relative error was significantly reduced in the high noise case
(ii).

Another setting in which the linear response theory might be expected to fail is the case of low
firing rates. To examine the effect, we revisit the FFI microcircuit considered in the main text. We
varied the effective rest potential EL,i + Ei of the downstream excitatory cell E2, while fixing the
remaining parameters. The theoretically and numerically obtained cross-correlations are shown in
Figure S4 at three values used for the effective rest potential.
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∞

-10-5  

-10-5  
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∞
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∞
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-10-4  

Figure S4. The performance of linear response theory in various firing regimes. For
the feed-forward inhibitory microcircuit considered in the manuscript (see Figure 3 of the main
text), we varied the effective rest potential EL,i + Ei (see Eq. (1) in the main text) to the cell E2

between three values — A. EL,i + Ei = −59 mV, B. EL,i + Ei = −54 mV (this is the value used
in the example in the main text), C. EL,i + Ei = −49 mV. Inset is the firing rate and the
coefficient of variation of the interspike interval distribution of cell E2.

For comparison, we have also included the CV of the ISI distribution for the cell E2. The three
chosen parameter values lead to three quantitatively and qualitatively different firing behaviors. In
particular, when the effective rest potential is -59 mV, firing is spontaneous, but rare (rate ∼ 1.7
Hz, CV ∼ 1.1). Although the error does seem to increase as firing rates decreases, the theory
still performs well even for very low-rate spiking. We suspect that part of this error is due to the
propensity of linear response theory to predict negative (nonphysical) firing rates when rates are
low but connections are strong.
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