
Text S1. Feasibility of Elementary Modes

In this supplement a detailed proof is given showing that a flux distribution containing
an infeasible EFM is always infeasible.

Methods

The flux direction for a chemical reaction is related to Gibbs free energy as fol-
lows:

∆rGj < 0 =⇒ vj > 0
∆rGj > 0 =⇒ vj < 0

(1)

Here, ∆rGj denotes Gibbs free energy for a reaction j, and vj is the flux through
this reaction. The free energy of a reaction can be calculated from Gibbs energies of
formation of the participating reactants (∆fG):

∆rG = S∆fG (2)

Note that ∆rG and ∆fG are vectors of length r and m for a metabolic network with
stoichiometric matrix S ∈ Rm×r containing m metabolites and r reactions. Gibbs
energy of formation for metabolites can be derived from its standard Gibbs energy and
the thermodynamic activity. The network-embedded thermodynamic (NET) analysis
applied here uses measured metabolite concentrations to derive energy of formation
for each metabolite (1). Allowing for a certain tolerance due to measurement errors,
Gibbs formation energies are constrained to an interval:

∆fGmin ≤∆fG ≤∆fGmax (3)

Given a flux vector v, NET analysis performs a feasibility analysis, adding additional
flux dependent constraints for every non-zero flux value vj , restricting Gibbs free
energy for reaction j according to eq. (1). This yields patterns of reaction direction-
alities that are not feasible, even if all individual reaction directions are very well
possible.

Let us assume for the moment that we have a tool that decides whether a certain flux
vector is feasible or not, based on the direction pattern of the flux vector. If we apply
the tool to special vectors like elementary modes (EMs), it would be desirable that
we could then draw feasibility conclusions also for other flux vectors, for instance for
those derived from elementary modes. Ideally, we would like to remove infeasible EMs
and shrink the flux cone accordingly. But is this really what we want, i.e. can we still
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generate all feasible flux vectors from the remaining feasible EMs? The answer is yes,
under certain conditions, and to work towards a proof, we have to concretize some
definitions.
Definition 1. The flux pattern φ(v) of a flux vector v1×r are the indices j ∈ {1, . . . , r}
associated with nonzero fluxes, multiplied with the signum of the flux value. More
formally,

φ(v) = { j · sgn(vj) | vj 6= 0 } where sgn(vj) =

{
−1 if vj < 0
0 if vj = 0

+1 if vj > 0
(4)

Note that irreversible reactions can be seen as special case for feasibility conditions,
preventing a flux direction of a single reaction. Hence, irreversibility constraints clas-
sify flux patterns of size one as infeasible. We can apply conditions for such simple
infeasibilities a priori to the computation, usually stated as non-negativity constraints
for the corresponding variables. More complex conditions are applied after the com-
putation of the elementary modes. For those conditions, we need a formal definition
of feasibility classification:
Definition 2. A function f(v) : Rd → [0, 1] is called feasibility classifier for flux
vectors v d if for any flux vector v ′ with φ(v ′) ⊇ φ(v), infeasibility (f = 0) of v
implies infeasibility of v ′:

φ(v ′) ⊇ φ(v) , f(v) = 0 =⇒ f(v ′) = 0 (5)

The NET analysis mentioned above is an example for a feasibility classifier, but the
following is true for any classifier conforming with Def. 2: infeasible elementary modes
can be removed from the generating matrix without losing feasible flux vectors. Equiv-
alently, we can compose any feasible flux vector from feasible elementary modes, as
stated formally by the following theorem:
Theorem 1. Let f be an feasibility classifier according to Def. 2, and let P be a
flux cone generated by n elementary modes ej (see Def. 2.39 and 2.40 in (2)). Let
us furthermore denote by F be the set of indices associated with feasible EMs, i.e.
F = { j | j ∈ {1, . . . , n} , f(ej) = 1}. Then, any feasible flux vector v ∈ P can be
composed solely from feasible elementary modes ek with k ∈ F . More formally, we
have:

v ∈ P, f(v) = 1 =⇒ ∀k ∈ F,∃λk ≥ 0 such that v =
∑
k∈F

λkek (6)
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Proof

Let us first establish an important relationship between flux patterns (Def. 1) and zero
sets (Def. 2.28, eq. (2.39) in (2)) associated with flux vectors:
Proposition 1. Let v1 and v2 be flux vectors in Rr with associated flux patterns
φ1 := φ(v1) and φ2 := φ(v2). Let v ′1 and v ′2 be the same vectors projected to the
augmented dimensionality space of the EM cone as implied by Def. 2.39 in (2), and
ζ1 := ζ(v ′1) and ζ2 := ζ(v ′2) be the corresponding zero sets given by eq. (2.39) in (2).
Then, the following holds:

φ1 ⊇ φ2 ⇐⇒ ζ1 ⊇ ζ2 (7)

⇐⇒ ζ2 ⊇ ζ1 (8)

φ1 6⊇ φ2 ⇐⇒ ζ1 6⊇ ζ2 (9)

⇐⇒ ζ2 6⊇ ζ1 (10)

Proof. Similar to the flux pattern (φ), the complement of the zero set (ζ) contains
indices associated with nonzero flux values. Let us consider any reaction indexed by i.
If i is irreversible, we have a one-to-one mapping from φ to ζ, i.e. both sets contain or
do not contain i. If i is reversible and the associated flux vector carries a positive flux
value at i, both sets contain i. For a negative flux value, φ contains −i and ζ contains
i + r. For zero flux, neither of the sets contains any of the elements and we have a
one-to-one correspondence between the elements in φ and ζ. From this, eq. (7) and (9)
follow immediately. The remaining equivalences are simple set contrapositions.

Proposition 2. Let v = q + λiei be a feasible ray composed of a (not necessarily
feasible) ray q and an infeasible elementary part λiei. Then

∃e 6' ei : φ(e) ⊆ φ(v) (11)

Proof. At least one flux value of a reversible reaction in ei has been cancelled out or
reverted in v, otherwise, φ(v) ⊇ φ(ei), and v would be infeasible according to eq. (5).
Due to eq. (10), also ζ(e ′i) 6⊇ ζ(v ′) holds for the projections to the EM cone (denoted
by ′). Note that elementary modes are not minimal, hence v can be an EM and still
composite, and we have

either v is an EM (12)

or ∃e 6' ei : φ(e) ⊂ φ(v) (13)

This follows from the combinatorial test for extreme rays (Lemma 2.4 in (2)): since
ζ(e ′i) is not a superset of ζ(v ′), either another EM e distinct from ei must exist with
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ζ(e ′) ⊃ ζ(v ′) and eq. (13) holds, or v is itself an EM, as stated by eq. (12). Eq. (11)
is clear if (13) holds. On the other hand, if v is an EM and since v 6' ei, we can set
e = v with φ(e) = φ(v) ⊆ φ(v).

Proposition 3. Let v = q + λiei be a feasible ray composed of a (not necessarily
feasible) ray q and an infeasible elementary part λiei, and v itself is not an EM, i.e.
eq. (13) holds. Then

∃e1 6' ei, e : φ(e1) ⊂ φ(v) (14)

Proof. Let us introduce a new vector v1 = v−λe. If we choose a minimal λ = min(
rj
ej

)

from all j with ej 6= 0, at least one flux value of v and e is cancelled in v1. Note that
λ > 0 since φ(v) ⊃ φ(e), i.e. all flux value pairs (rj , ej) have equal sign for ej 6= 0,
and v1 has no inverted sign compared to v due to the minimal choice of λ. Hence,
φ(v1) ⊂ φ(v), and consequently, all non-negativity constraints still hold and v1 is a
ray of the flux cone.
Furthermore, we know that φ(v) 6⊇ φ(ei), hence clearly also φ(v1) 6⊇ φ(ei), and since
we have cancelled out at least one value of e, also φ(v1) 6⊇ φ(e). Then,

either v1 is an EM (15)

or ∃e1 6' ei, e : φ(e1) ⊂ φ(v1) (16)

The reasoning is the same as for (12, 13): either v1 is an EM, or its elementarity is
disproved by existence of e1. Since φ(v1) ⊂ φ(v), (14) follows.

Lemma 1 (Elimination Lemma for Infeasible Elementary Terms). Let v = q + λiei
be a feasible ray composed of a (not necessarily feasible) ray q and an infeasible el-
ementary part λiei. Then, there exists some λ ≥ 0 such that v =

∑n
j=1 λjej with

λj = 0 if j = i, i.e. v can be decomposed into elementary modes without using ei.

Proof. Using Prop. 2, either v 6' ei is an EM according to (12) and we’re done, or
we can apply Prop. 3 and v = v1 + λe. If v1 is an EM (eq. 15), we’re done since
e,v1 6' ei. Otherwise, we reapply the decomposition technique used in Prop. 3 for v1
and e1, i.e. we find a ray v2 such that v1 = v2 + λ1e1.
We continue with the decomposition technique vk = vk+1 + λkek until vk+1 is an
EM. Note that the newly found elementary modes ek 6' ei, nor are they equivalent to
previously found elementary modes, since φ(v) 6⊇ φ(ei), and φ(vk+1) ⊂ φ(vk) ⊂ . . . ⊂
φ(v1) ⊂ φ(v). We can thus rewrite v without using ei, namely v = λe+ λ1e1 + . . .+
λkek + λk+1ek+1 stopping at the elementary vk+1 ' ek+1.

Decomposition technique and dependencies of flux patterns are visualized in Fig. 1.

Now, we are ready to prove Theorem 1.
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v = q + λiei φ(ei)

6⊆

v1 + λe φ(e) ⊂

6⊆
φ(v)

⊃

v2 + λ1e1 φ(e1) ⊂

6⊆
φ(v1)

⊃

· · · + λ2e2 φ(e2) ⊂

6⊆
φ(v2)

⊃

vk + · · · · · ·

⊃

vk+1 +

'

λkek φ(ek) ⊂

6⊆
φ(vk)

⊃

ek+1 φ(ek+1) ≡ φ(vk+1)

Figure 1: Elimination of infeasible elementary term λiei: decomposition of v into
elementary modes e, e1, . . . , ek+1 (left) and depencencies of flux patterns
(right).

Proof. Assume that some ek in eq. (6) is infeasible, and let us denoted it by ei. Using
Lemma 1, we can eliminate ei for every feasible ray v of the flux cone, i.e. we find
some λk ≥ 0 such that

v =
∑

k∈{1,...,r}\{i}

λkek (17)

Since we can still generate all feasible EMs without ei, we can remove it and consider
the reduced flux cone generated by (n−1) elementary modes [ek], k ∈ {1, . . . , r}\{i}.
Continuing with the reduced flux cone, we eliminate another infeasible elementary
term until no infeasible terms are left.
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