
Supporting Text S1

Data analysis

Tip growth speed

New branches do not grow at the same speed as established branches. Instead
the tips of new branches initially extend more slowly and gradually increase in
speed before attaining full speed. To quantitatively analyse this increase, we
used our time-lapse imaging to measure the extension rate of 45 established
and 40 new branches. Figure S1 shows the mean new branch growth speed
against time (starting from when the branch first appears), and compares
this to the mean growth speed of established hyphae. Using the same data
we can also estimate the fluctuations in the initial and established extension
speeds, from which we conclude that new branches initially grow at about
v0 = 4 ± 2µmhr−1, and then gradually increase (approximately linearly) in
speed until they reach vmax = 8± 4µmhr−1 after about T = 1.5 hours.

Subtraction of branch lengths

As explained in Materials and Methods, the experimental data do not show
new branches at the exact moment that they emerge. Instead it is necessary
to infer the tip-to-branch distance, L, at the moment of branching. This in-
volves knowledge of the tip growth speed of new branches, v0, the tip growth
speed of established branches, vmax, and how long new branches take to
reach full speed, T . However, these three parameters will differ from branch
to branch. If fixed values are used then this will lead to incorrect tip-to-
branch distances; in extreme cases, this can even lead to negative distances
for tip-to-branch distances. Ideally it would be necessary to determine v0,
vmax and T for each branch, although this is not possible from still images.
Instead, we determine a distribution of tip-to-branch distances for each mea-
sured branch. To do this we allow all three parameters to fluctuate according
to Gaussian distributions (which are truncated to ensure 0 < v0 < vmax and
T > 0). Each set {v0, vmax, T} leads to a tip-to-branch distance and the vari-
ations in the parameters leads to a distribution for L. Negative values of L
are unphysical and so the distributions are truncated to remove negative dis-
tances and rescaled so that they still have unit area. The complete measured
tip-to-branch distribution is obtained by summing the distributions derived
from all the individual measured branches. The means and standard devia-
tions for v0, vmax and T are taken from the above data in Oxoid antibiotic
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medium. Although these values are likely to be altered in YEME medium,
we have tried a wide range of values for each and discovered that changing
the values of some or all of v0, vmax and T by 100% or more makes little differ-
ence to the final histogram. Although this may appear counter-intuitive, the
absolute tip growth speed cancels out of the branch-subtraction procedure;
it is only the difference between v0 and vmax over the relatively short period
T that is relevant.

Hyphal-base to first-offshoot distribution

In order to constrain the value of Nsplit, we measured the distance between
the base of hyphae (where the hypha originates from its parent hypha) and
the first (i.e. nearest) offshoot branch. If Nsplit > 〈Nbr〉 then there should be
a gap, during which the tip-focus of the new branch is growing in size, before
it can form its own offshoot branches. As with measuring the tip-to-branch
and branch-to-branch distributions, it is important to impose a trimming
protocol. The results at 35µm trim are shown in Figure S2. The data is
well fit by a decaying exponential. This is the behaviour expected if Nsplit is
equal to (or less than) 〈Nbr〉 since then new tip-foci have the potential to split
almost straight away after branching initiation. Since there is no evidence
for a gap before new hyphae can form their own branches, we conclude that
Nsplit ≤ 〈Nbr〉.

Model robustness

Robustness to changes in mean parameter values and in
size of fluctuations

Our model is robust to changes in all eight parameters in Table 1. For
example, if we take 〈N0〉 as 3, 000 rather than 1, 700, then, although the
distributions and their averages are changed to some extent, there is no
overall qualitative difference (Figure S3). The same applies if we decrease
〈N0〉, or if we vary the other parameters by up to 30% of their size.

The minimal model only considers fluctuations in N0 and Nbr, which are
sufficient to capture the observed distributions. However, there is no reason
why the other parameters, in particular the tip growth speed, v, and the
on-rate parameter, β, should not also vary. If these are also allowed to vary,
even by up to 25% each, then there is no qualitative difference in either the
tip-to-branch or branch-to-branch distributions.
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Robustness to distribution of fluctuations

In the simplest version of the model, we assume a truncated normal distri-
bution for N0 with mean 〈N0〉 = 1, 700 and standard deviation δN0 = 1, 000.
Although simple, this leads to a large, potentially unrealistic, weight for pro-
ducing foci of very small size. To rectify this it is possible to consider other
distributions where the distribution drops towards zero for small initial foci
sizes. We considered three types of distribution: log-normal, gamma, and
a distribution that is triangular for small foci and Gaussian for large foci.
Each distribution had a similar mean and standard deviation to the original
truncated Gaussian distribution. In each case there was little qualitative dif-
ference from the truncated Gaussian case, showing that the exact shape of
the N0 distribution is not important for our results. We also considered log-
normal and gamma distributions for Nbr, which again made little difference.

Robustness to foci growth dynamics and foci evapora-
tion

In the main text we implemented a rule where a focus containing N DivIVA
molecules increases in size at a rate proportional to its size: Ṅ = βN . How-
ever, we can consider other rules, such as a constant on-rate (Ṅ = β0), or
even some combination of the two (Ṅ = β0 + βN). Also, we have assumed
that foci can capture DivIVA molecules from the cytoplasm but can never
return them, i.e. there is no off-rate. However, if we assume that the off-
rate is either constant, linear in N , or some combination of the two, then
including an off-rate just implies that β0 and β are rescaled. In any case,
we find that these alternative growth laws do not qualitatively change any
of our results, and do not lead to a better fit with the experimental data.
For example, Figure S4 shows the distributions when a constant growth rule
(Ṅ = β0) is implemented.

It is possible that foci can spontaneously evaporate by detaching into the
cytoplasm. However, it is difficult to directly observe this potential effect
since foci often move out of the focal plane, thereby disappearing. We con-
sidered a simple extension to the minimal model where developing foci (i.e.
those which have not yet initiated a branch) have a fixed probability per
second of evaporating. Even with a probability such that over half of all
foci evaporate before initiating a branch, there is little change to the model
distributions. This is because the tip-to-branch distribution is determined
only by those foci which eventually initiate branches, whereas any change
in the branch-to-branch distribution can be compensated by increasing the
tip-focus splitting parameter, γ.
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Analytic results

Analytic expression for the tip-to-branch distribution

Starting from Eq. (1) and by varying both N0 and Nbr, we can derive an
analytic expression for the distribution of the tip-to-branch distance, L. We
assume that both N0 and Nbr follow independent truncated normal distribu-
tions with means µ0 and µbr and standard deviations σ0 and σbr respectively1.
The probability density function (pdf) for N0 is given by

f0(N0) =


0 if N0 ≤ 0,

1√
2πσ0Φ

“
µ0
σ0

”e
− (N0−µ0)2

2σ2
0 if N0 > 0,

(S1)

where Φ(x) is the standard normal cumulative distribution function,
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2
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A similar expression holds for fbr(Nbr), the pdf for Nbr. First, we deter-
mine the distribution of u ≡ Nbr

N0
, which we write as g(u). The ratio of two

distributions is a standard result:
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1Here µ0 and µbr are the means of the full Gaussians, rather than those of the truncated
Gaussians. The same also applies to the standard deviations, σ0 and σbr.
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Finally, we can determine the distribution of L, h(L), by using L = v
β

ln u and

the fact that |h(L)dL| = |g(u)du|. Negative values of L imply that N0 > Nbr

and so, as discussed in the main text, these branches will emerge at zero
distance from the tip and so should really contribute at L = 0. So the entire
weight of h(L) for negative L should be placed at L = 0. We achieve this by
using a delta function at the origin of u. Then our final expression for the
tip-to-branch distribution, h̄(L), becomes

h̄(L) =

{
0 if L < 0,

δ(L)
∫ 0

−∞ h(L̃)dL̃ + h(L) if L ≥ 0,
(S2)

where
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and where

a(L) =
1

σ2
0

+
1

σ2
br

e2β
v

L,

b(L) =
µ0

σ2
0

+
µbr

σ2
br

e
β
v

L.

To compare this analytic solution to the numerical simulations, we must
convert 〈N0〉, 〈Nbr〉, δN0 and δNbr (the means and standard deviations of
the truncated Gaussians) to µ0, µbr, σ0 and σbr (the means and standard
deviations of the full Gaussians). Using the values in Table 1, where 〈N0〉 =
1, 700, 〈Nbr〉 = 10, 000, δN0 = 1, 000 and δNbr = 2, 600, we find that µ0 ≈
1, 500, µbr ≈ 10, 000, σ0 ≈ 1, 200 and σbr ≈ 2, 600.

The resulting distribution (Figure S5) can never be measured experimen-
tally since it corresponds to measuring tip-to-branch distances at infinite
trim. However, it is in many ways the “true” underlying distribution, a
distribution which is unbiased by experimental limitations.

Analytic expression for the trimmed tip-to-branch dis-
tribution

To compare Eq. (S2) with the measured data we must impose the same trim-
ming protocol. By trimming all branches to some trim length Λ, it becomes
less likely that we observe branches with longer tip-to-branch distances. This
is because such branches emerge from foci which take longer to develop into
branches and thus the associated tip-focus splitting event has a smaller time
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frame in which it must have occurred. This is illustrated in Figure S6, where
a branch with tip-to-branch distance L will only be measured if it was cre-
ated within Λ−L of the base of the hypha; if it is created nearer the tip than
this, then the focus will not have originated a new branch by the time it is
measured. Thus, assuming a constant probability per unit time of tip-focus
splitting (which will be true when a sufficiently large number of hyphae are
analysed), the probability of observing such a branch is scaled by a factor
of Λ − L. This implies that the probability density function in Eq. (S2)
should be scaled by the same factor. This gives the Λ-trimmed tip-to-branch
distribution, h̄Λ(L), as

h̄Λ(L) =


0 if L < 0,(

Λ−L
Λ−µh̄

)
h̄(L) if 0 ≤ L < Λ,

0 if L ≥ Λ,

(S3)

where µh̄ =
∫∞

0
Lh̄(L)dL is the mean of h̄(L), and the Λ − µh̄ denominator

is required to fix the normalisation.

The tip-to-branch distance as a function of the model
parameters

In Figure S7 we show how the mode of the tip-to-branch distribution varies
with (i) the binding parameter, β, (ii) the mean initial focus size, 〈N0〉,
and (iii) the mean focus size for branch initiation, 〈Nbr〉. With an infinite
trim the behaviour is given by Eq. (1), which shows that 〈L〉 ∼ 1/β, 〈L〉 ∼
const−ln〈N0〉 and 〈L〉 ∼ const+ln〈Nbr〉, where 〈L〉 here represents the mode
of L. However, the behaviour is less intuitive when the trimming protocol is
imposed. The most interesting case is when β is varied. At large values of
β, the modal trimmed tip-to-branch distance tends to the untrimmed value.
However, as β is reduced, the trimmed modal value reaches a maximum
and begins to drop to zero as β is further reduced. This counter-intuitive
behaviour is related to the trim length being much smaller than the true
(i.e. infinite trim) modal tip-to-branch distance. It is worth recalling that
it is only possible to directly measure the trimmed distribution and so, for
any measured trimmed modal tip-to-branch distance, there are two possible
values of β. However, it is easy to distinguish the correct value by the number
of discarded hyphae (due to imposing the trimming protocol): the smaller β
corresponds to a much greater true (i.e. infinite trim) modal distance and so
results in a far greater number of discarded hyphae. We do not observe such
a large number of discarded hyphae and so our wild-type β is the larger of
the two possible values.
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The full model

Despite the success of the minimal model described above and in the main
paper, it is nevertheless useful to develop a full model including effects such
as spatial and temporal gradients of the DivIVA concentration. This is im-
portant for two reasons: firstly, it justifies our claims that the extra parts
of the full model play only a minor role, and secondly, the full model in-
cludes spontaneous nucleation which we need to understand heavy DivIVA
overexpression.

Basic components

The full model is a one-dimensional simulation of an entire Streptomyces
colony. Although there are stochastic elements, the diffusion, production
and degradation of DivIVA is handled deterministically (see Table S1 for pa-
rameter values). This is justified since DivIVA for our parameters is present
at high copy number (hundreds of copies per micron). Each hypha is rep-
resented by a 1D array specifying the cytoplasmic DivIVA density at that
position, with a focus at the tip. Each site may or may not contain a focus on
either the adjacent upper or lower membrane. After a new branch develops,
an additional 1D array representing the new branch is generated. At each
lattice site and time step, DivIVA is produced, degraded and diffuses using an
Euler discretisation of the corresponding partial differential equation, with
lattice spacing of ∆x = 0.1µm and a time step of ∆t = 10−4s. Diffusion is
entirely one-dimensional apart from at points where branches meet, where
two-dimensional diffusion occurs. Also, if there is an adjacent focus on the
membrane, then DivIVA molecules can be recruited from the cytoplasm to
the focus (and also in principle detach from the focus back to the cytoplasm).
The number of molecules being recruited to a focus is linearly dependent on
both the cytoplasmic DivIVA density at that point, ρ, and the number of
molecules in the focus, N , such that ∆N = β̃ρN∆t, where β̃ is the binding
constant. At each time step, the tip of each branch is extended by v∆t.
Whenever the branch length (as measured in lattice steps) increases through
an integer value, an extra lattice site is inserted (with the tip-focus now be-
ing adjacent to the newly-inserted site). Furthermore, tip-foci which contain
more than Nsplit molecules have a constant probability at each time step of
splitting to create new foci, which are placed on the membrane adjacent to
the neighbouring cytoplasmic lattice site. When they do so the size of the
focus left behind, N0, is chosen from a truncated Gaussian distribution of
the form given in Eq. (S1). At the same time, the size that a focus needs to
reach before a new branch is initiated, Nbr, is chosen from a second truncated
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Gaussian distribution of the same form. When that focus finally grows to a
size Nbr, a new branch is formed with the focus now sitting adjacent to the
cytoplasmic site at the tip of that branch.

Additional processes

To the above form of the model we added various other effects. Firstly,
spontaneous nucleation was included, where new foci could now arise at
any membrane site along any hypha. This was implemented as a stochastic
process where the probability of nucleation per unit time, η, on a membrane
adjacent to each lattice site is dependent on the cytoplasmic DivIVA density,
ρ, at that adjacent site and on a threshold concentration, ρSN (see [16]):

η =

{
0 if ρ ≤ ρSN,
η̃(ρ− ρSN) if ρ > ρSN,

(S4)

where η̃ is a constant that is independent of ρ. Below the threshold, nucle-
ation is assumed not to occur, whereas, above the threshold, the nucleation
probability per unit time is assumed to increase linearly with the DivIVA
concentration above the threshold. After nucleation, foci begin with a fixed
size of N0 = 5 and with Nbr chosen in the same way as before, with the
DivIVA for the new focus taken from the lattice site directly adjacent to the
new focus. Parameter values for this and the other processes discussed here
are listed in Table S1. Secondly, we included cross-walls which sometimes ap-
pear during vegetative growth and which can be visualised by fluorescently
tagging FtsZ [S1]. For our purposes, the main effect of FtsZ is to isolate
different compartments, preventing DivIVA from diffusing between them. It
was shown in [S2] that FtsZ rings tend to form in a progressive manner, with
subsequent Z-rings appearing closer to the tip. Rather than modelling the
detailed dynamics of FtsZ and the formation of cross-walls, for each branch
we simply included a constant probability per unit time (1 × 10−4s−1) of
forming a cross-wall; if a cross-wall is formed then its position is chosen ran-
domly between the previous cross-wall and the tip. Thirdly, new branches
initially extended at only half the speed of established branches, as found
experimentally, thereafter gradually increasing in speed in a linear fashion,
to achieve full speed after ninety minutes. Previously, in the minimal model,
this effect was included only in the experimental extraction of tip-to-branch
distances, rather than in the simulation itself.
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Curved branch growth

We next consider non-straight tip-growth and allow the tip-growth direction
to vary. It is possible that the curvature of the membrane just next to
the tip is a factor influencing when tip-focus splitting occurs. Rather than
trying to understand the details of what controls the tip-growth direction
(not currently a tractable problem), at each time step we simply choose
the new growth direction as the previous growth direction plus a Gaussian-
distributed correction with zero mean. The width of this Gaussian (3.5◦ per
new lattice site) is determined by the persistence length (1.6µm), which is
the distance over which correlations in the growth direction are maintained.
Once curved tip-growth is implemented, we can replace the tip-focus splitting
parameter with a rule based on curvature: since DivIVA may preferentially
form foci on negatively-curved membranes, we implement a rule where tip-
foci split only if the local curvature near the tip (the change in tip direction
over the last 1µm of growth) is sufficiently high (greater than 15◦). This
curvature threshold is chosen to reproduce the tip-focus splitting probability
per unit time and to correctly match the branch-to-branch distribution. We
also allow for a small probability of focus deposition on the membrane with
the “wrong” local curvature (positive rather than negative; see Table S1).

Results

The full model (which uses the parameters in Table S1) produces output
such as Videos S3 and S4, which match well with the observed Streptomyces
phenotypes both in the wild type and when DivIVA is overexpressed. Despite
the addition of effects such as cross-walls, DivIVA gradients and curvature-
dependent tip-focus splitting, the full model is practically indistinguishable
from the minimal model. In particular, there is no significant change in the
tip-to-branch or branch-to-branch distributions. Thus the minimal model
outlined in the main paper is sufficient to capture branching dynamics in
Streptomyces. The full model is only needed when spontaneous nucleation
becomes an important effect, such as when DivIVA is heavily overexpressed.
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Table S1: Additional model parameters and their values
Parameter Value
DivIVA cytoplasmic diffusion constant, D 5µm2s−1

DivIVA cytoplasmic production, µ 0.2µm−1s−1

DivIVA cytoplasmic degradation rate, ν 5× 10−4s−1

Binding constant, β̃ 3× 10−7µms−1

Spontaneous nucleation threshold, ρSN 400µm−1

Spontaneous nucleation parameter, η̃ 5× 10−8µms−1

FtsZ ring creation probability per unit time 1× 10−4s−1

Distribution width for new growth direction 3.5◦

Local curvature length 1µm
Tip-focus splitting curvature threshold 15◦

Probability of “wrong”-side splitting 0.05
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Supporting Figure Legends

Figure S1: Tip growth speed against time in Oxoid antibiotic medium for an
established hypha and a newly formed branch. Error bars show the standard
error of the mean.

Figure S2: Experimental distribution of distances from parent hypha to first
offshoot at 35µm trim. 44 data points.

Figure S3: Comparison of model histograms at 80µm trim with 〈N0〉 = 1, 700
and 〈N0〉 = 3, 000. (A) Tip-to-branch distribution. (B) Branch-to-branch
distribution.

Figure S4: Comparison of histograms at 80µm trim for linear growth model
(Ṅ = βN , parameters in Table 1) and constant growth model (Ṅ = β0,
v = 8µmhr−1, β0 = 0.29s−1, 〈N0〉 = 1, 300, δN0 = 850, 〈Nbr〉 = 10, 000,
δNbr = 3, 000, γ = 2.5 × 10−3s−1, Nsplit = 10, 000). (A) Tip-to-branch
distribution. (B) Branch-to-branch distribution.

Figure S5: Analytic tip-to-branch distribution with infinite trim. This repre-
sents the “true” underlying distribution which can never be directly measured
experimentally.

Figure S6: Requirement for a branch to be included in the data set. (A) A
growing branch which will be measured when it has grown another Λµm. (B)
A new focus is created at distance x from the base. (C) This focus develops
into a branch after the tip has grown a further Lµm, i.e. this branch has a
tip-to-branch distance of Lµm. (D) Only branches within Λ of the tip are
used to collect data. So this branch will only be recorded if x + L < Λ.
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Figure S7: Behaviour of the mode of the tip-to-branch distance distribution
as a function of various model parameters, for both an infinite trim (blue line)
and an 80µm trim (red line). The infinite trim line is always higher than the
80µm trim line. The black dotted line shows the wild-type parameter value.
(A) As a function of the binding parameter, β. (B) As a function of the
mean initial focus size, 〈N0〉. (C) As a function of the mean focus size for
branch initiation, 〈Nbr〉.

Figure S8: Comparison of distributions between the minimal model and
experimental data at 60µm trim. Analytic tip-to-branch distribution is also
shown (curved line). (A) Tip-to-branch distribution. 1876 experimental
data points. (B) Zoomed tip-to-branch distribution. (C) Branch-to-branch
distribution. 1215 experimental data points.

Figure S9: Comparison of distributions between the minimal model and
experimental data at 100µm trim. Analytic tip-to-branch distribution is
also shown (curved line). (A) Tip-to-branch distribution. 297 experimental
data points. (B) Zoomed tip-to-branch distribution. (C) Branch-to-branch
distribution. 257 experimental data points.

Figure S10: Schematic of colony morphology for various values of the binding
parameter, β. Red dots represent DivIVA foci. (A) Small value of β. (B)
Wild-type value of β. (C) Large value of β.
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Video Legends

Video S1: Movie version of Figure 1. Evidence of tip-focus splitting, growth
of foci and emergence of branches, in fluorescence-imaged Streptomyces coeli-
color expressing divIVA-egfp.

Video S2: Movie version of Figure 3. Example of branching at almost zero
distance from the tip.

Video S3: Example of the full model simulation output, showing Strepto-
myces starting from a spore and growing for about fourteen hours. Hyphae
in green; DivIVA foci in red.

Video S4: Large-scale example of the full model simulation output, show-
ing Streptomyces starting from a spore and growing for about eleven hours.
Hyphae in green; DivIVA foci in red; cross-walls in yellow.

Video S5: Large-scale example of the full model simulation output with 25-
fold overexpression of DivIVA. Simulation lasts for about seven hours with
overexpression occurring after 14,000s. Hyphae in green; DivIVA foci in red;
cross-walls in yellow.
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