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Text S1

The main intermediate steps of the derivation of the fixed point (main text, Eq. 5) were given in the
Methods. Here, we discuss the details of the derivation.

Derivation of Equation 14 . First, we show that we obtain Eq. 14 (see Methods) if we apply Eq. 13
iteratively N times. For the derivation of Eq. 14, we will use two identities. First, note that for any
sequence R (n) and S (n) the following holds:
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Second, note that for any sequence S (n) we have:
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Eq. 1 is given in a straight-forward way by splitting the right-hand-side into a sum to N plus an additional
term, and by changing the indices. Eq. 2 can be proven by induction and by making use of Eq. 1 for
R (n) = S (n). For both identities and in the following, we use the convention that for n = N the product∏N
n′=n+1Xn′ is equal to one.

We will now show by induction that Eq. 14 holds. For N = 1 Eq. 14 is equal to Eq. 13 which verifies

the base case. For the induction step, we start with Eq. 13 for N +1 and insert Eq. 14 for W
(T+N)
cd , which
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results in:
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To obtain (3) we applied identity (1) with R (n′) = F
(T+n′)
cd and S (n′) = ε

A

∑
d′ F

(T+n′)
cd′ . To obtain (4)

we applied identity (2) with S (n′) = ε
A

∑
d′ F

(T+n′)
cd′ . The final expression (4) is identical to Eq. 14 for

N + 1, which completes the induction step and proves the claim.

Approximation 1. First, consider the product in the numerator of (14 ). If we rewrite the expres-
sion using x = exp(log(x)), we can apply a Taylor expansion for log(1 + x) around x = 0. By keeping
the linear term for small ε we obtain:

N∏
n′=n+1

(1 +
ε

A

∑
d′

F
(T+N−n′)
cd′ ) = exp

( N∑
n′=n+1

log(1 +
ε

A

∑
d′

F
(T+N−n′)
cd′ )

)
≈ exp

( ε
A

∑
d′

N∑
n′=n+1

F
(T+N−n′)
cd′

)
≈ exp

( ε
A

(N − n)
∑
d′

F̂
(n)
cd′

)
, (5)

By applying the approximation (5) to the numerator of (14 ) and for n = 0 to the denominator, we obtain
(15 ).

Approximation 2.

Consider the sum over n in (15 ). For the summands with relatively small n,
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mated by the mean over N iterations,
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c . Only for n close to N we

can expect the approximation to become inaccurate. Note, however, that the sum in (15 ) is dominated
by summands with small values of n. This is because for small ε and large N the exponential factors are
very large for n significantly smaller than N compared to factors with n close to N . We can therefore
approximate:
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The sum on the right-hand-side of (6) we now split into K parts with Ñ summands such that
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changes little across each partial sum (note that we assume constant W ). We
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can then approximate:
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If we apply (6) and (7) to Eq. 15 , we obtain Eq. 16 .

Approximation 3.
To obtain the left-hand-side of (17 ), we first observe that the sum over n in (16 ) can be written as a
geometric series:
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The approximation holds for small but finite ε and large N : q is smaller than one for small ε, which
implies that qN+1 approaches zero for large N . By applying (8) to (16 ) and by observing that the first
term in (16 ) is negligible for large N , we obtain (17 ).


