Supplementary Material

Text S1

Spatiotemporal hemodynamics

The model equations described in [1] detail the general hemodynamic response. In the present
study, the linear spatiotemporal hemodynamic response function (stHRF) is derived from this
general model. Further mathematical analysis will be published in a subsequent paper. This
document references equations from the Methods section of the main text by number, while

equations from the supporting information are prefixed S.

The key steps in this derivation involve the definition of boundary conditions. These specify the
inflow and outflow of blood mass, and thus appear as sources and sinks in the continuity

equation relating the density of mass contributed by blood in tissue & to fluid velocity v,

P,V v(r,n)+ M = p,(Source - Sink), (s1)

ot

where pr is the density of blood, and the source and sink on the right hand side are functions of
time t and position r within the cortical tissue, and are in units of blood flow (s'1). The source of
blood mass is due to rise of neural activity, z, which modulates blood flow, F(r,t), in a small region
(See Figure S1). The sink of blood mass is due to the outflow of blood at draining veins and the
rate at which this occurs is proportional to the pore pressure, cpP(r,t), where cpis the constant of
proportionality between pressure and blood outflow rate, listed in Table S1. Together these two

conditions lead to the model equation given in Eq. 2 in the Methods.

The source and sink each correspond to boundary conditions on the fluid velocity terms that
enter the mass and momentum conservation equations. By considering the flux of blood velocity
to the mass inflow entering the system, the condition for the inflow fluid velocity vr can be

written as

Vv, (r,t)=F(r,1). (S2)



This argument is similar for the outflow condition, leading to
Vv, (r,t)=-c,P(r,t), (S3)

where vp is the velocity at the outflow. At the microscopic level, mass inflow/outflows occur at
discrete sources and sinks, respectively. In the present model the inflows and outflows are
averaged over the mesoscopic scale (~0.5 mm) so that they are approximated as spatially

continuous on the cortical sheet.

The constraints Eq. S2 and Eq. S3 on the fluid velocity then yield the momentum conservation Eq.
3 in the main text, with the corresponding Eq. 5 for the conservation of deoxygenated
hemoglobin (dHb). Another boundary condition that needs to be specified is the rate at which the
concentration of dHb leaves due to blood outflow. The form that is adopted is similar to balloon
models, in that it argues that the outflowing blood is well mixed. This implies the concentration

of dHb leaving the system is

cpP(r,t)
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which is the final term in Eq. 5 of the main text.

Model Linearization

As long as the neural activity signal is sufficiently small, the hemodynamic response can be
estimated through linear analysis. Under this assumption one can analyze linear perturbations
from the steady state. This is achieved mathematically by writing each variable 6 [i.e., either

F,Q,P,v,z, or &] as the sum of its steady value 6 and its linear perturbation 6, i.e.
O(r,t)=0,+6,(r.1). (S5)

In this system, the steady state is determined by setting all spatial and temporal derivatives to
zero and solving the ensuing algebraic equations. A further assumption is that the steady state on

average is spatially uniform and that the mean blood fluid velocity averages to 0.

With these assumptions, the system dynamics can now be represented by four evolution

equations. Firstly the wave equation for & [Eq. 7 of the main text] is



2
i g,(Z’t) +27 §§g’t) ~ v VE(r.0) = p,F(r,1), 56)

where 2I'" = B/t + D/pr (Note that the superscript is omitted and from this point all quantities are
linear perturbations from steady state). The linearized equation for dHb concentration is

) I (B-1)

+[y&r,n- 00l - ;[Q(r,t) + E—S(r,t) : (S7)
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The linear equation that links neural activity to blood flow is,

2
d F(:,t) L dE@D
dt dt

+yF(r.t)=2z(r,t), (S8)

and the BOLD signal equation is

y(r,t) = 1 (ky + k)

(S9)
Py &
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Further details will be discussed in a companion paper that elaborates on the derivation of this

wave equation and provides an extensive parameter exploration of the model.

Fourier analysis of linear perturbations

This linear response is analyzed in terms of its frequency content to derive complex
spatiotemporal transfer functions T4(k,mw) that give the response of one variable A to changes in
another B at the same spatial frequency (i.e. wave vector) k and temporal angular frequency w

via,
Tas(k,w)=A(k,»)/B(k,w). (S10)

The frequency response to an arbitrary stimulus can be derived by Fourier means via these
transfer functions. . The convention for the Fourier transform f{k w) with spatial frequency k and

temporal angular frequency o of a signal f{r,t) is defined as

flkw)= [dr [ dif(rte™™*, (1)



with its inverse being
dw —i(wr-k- r)
fr,0)= f f o T koe (512)

The following transfer functions were calculated for all the dynamical Egs. S6-S9, yielding,

T, (k.w)= 1 5 , (S13)
—(a) + ;irc) + 0}
—iwp;
T (k) = v -0 -2l (S14)
QO 1 _ . _ -1 _
Ty (k0)= 22— [ Vio-7'(B-2)+ r]], (S15)

E —iw+n+T

These equations embody the physical stages seen in Fig. 1 of the main text. Eq. S13 represents
flow dynamics in response to a neural activity, Eq. S14 represents the blood volume response to
arise in flow, and Eq. S15 represents the response of dHb dynamics to a change in blood volume.
Together these transfer functions for individual processes yield the overall transfer function via

the BOLD signal Eq. S9:

T, (ko) (k, fk )[ QQ(/’E ’:’;) T, (k.0) T, (k). (S16)

Using S13 -S15, the transfer function S16 for the BOLD signal equation can be rewritten as

—iw(k, - k) 1

k*vy —* - 2iCw ~(w+ z'1</2)2 + ] '
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k, -k, —io+n+1"

(517)

From this equation it is clear that the linear spatiotemporal HRF contains only two new model

parameters that do not occur in purely temporal models of hemodynamics, such as the balloon



model. These are the strength of viscous damping, D (which is included in the damping constant

I') and the propagation speed v;.

Calculation of the BOLD response

The transfer function, Eq. S17, can be used to derive the BOLD response to an arbitrary neural
input via the following steps: (i) Fourier transform the neural activity input from r and ¢ to k and
®.; (ii) Use the transfer function, Eq. S17, to find the corresponding BOLD response in Fourier
space. (iii) Inverse Fourier transform this response back to coordinate space. These steps are

expressed mathematically as:

dzk d —i(wt-k-r
vt = [ ﬂ)zfﬁTyz(k,w)z(k,w)e (on-ker) (S18)

(2
In predicting the response to a 1-dimensional stimulus - for example an isoeccentric line in V1 -

the following form for the neural activity is made,
(1) = z(x,1), (519)

which represents a spatial distribution of neural activity that does not depend on (i.e., is constant
with respect to) the spatial coordinate y’ parallel to the stimulus line (where the prime in y’ is
used to disambiguate this from the BOLD signal variable). In Fourier space the neural activity is

then given by,
z(k,w) = 8(k )z (k,,0), (S20)

’

where ¢ is the Dirac delta function and ky and k, are the spatial frequencies in the x and y
directions. Therefore the one dimensional spatiotemporal HRF to a 1D neural stimulus is given

by the inverse Fourier transform (to within a constant factor),

dk d —i(wt—k,x
)’(x,t)=f 23;f£Tyz(kx,w)z(kx,w)e (or-hix) (s21)

where the delta function in Eq. S20 has been used to evaluate the y’ transform. Eq. S21 yields the
response to a line stimulus on the cortex, such as that evoked by an isoeccentric curve in the

visual field.



To represent the experiment, the following form for z was used:
2(x,t) = b(tyexp[-x* (207)], (522)

where o= 1 mm is the spatial spread of the neural activity and b(t) is the temporal evolution of

the stimulus, which is chosen to match the experimental design, i.e.,

b(t) 1, O<t=8s 23
0, t>8s (523)

Model variables and parameters
The model contains physiological variables and parameters. Table S1 summarizes the model

variables, and details the complete set of physiological parameters.

Model Variables

Fluid velocity v 0-12 mm s (3]

dHb concentration Q 6-20 mmol m™ (4]

Neural activity z - o -

Full Model parameters

Porous coupling 1o 10x(0.03)P PakgPm3F  See text a
constant

Flow-dependent y 0.41 e [5] b
elimination constant

Effective viscosity of D 106 — 850 kgm>s'  Seetext a
blood

Elasticity exponent derived quantity

Mean hemodynamic T 1-4 s [7] b,c
transit time

Concentration of Y 1.9 mmol kg’ See below



hemoglobin per unit
mass density of

blood.

Resting blood Vo 0.03 - [5] b,c

volume fraction

Resting mass density &o=p: Vo 30 kg e derived quantity a

contributed by

blood in tissue.

Magnetic field k1,kz,k3 4.2,1.7,0.41 - [8] b,c

parameters at 3T

and TE =30 ms

Linearized Model parameters

Flow natural wr =[(-1<2+4y)1/2]/2 0.55 e linear result b,c

frequency

Blood outflow cp= Fo/Po = g pa derived quantity a

constant

Ratio of resting YE, NT+ 1 2-4 - derived quantity a

oxygenated Hb to =

dHb Q nr

Damping constant o 1B . D 0.1-1 N Estimated in this a,c

"2l p, study (see below)

Propagation velocity , _ (c c /J;Sﬁ—l)”z 1-20 R S Estimated in this a,c
f D2l study (see below)

Spread of neural o 1 mm [9] a,c

activity

Table S1: The model variables and parameters. At each row, the first column details the quantity,
the second column show the symbols that describe these quantities in the model. The third
column details the nominal range (if it exists in the literature), with its appropriate units in the
fourth column and its source in the 5% column. The last column details notes on each
variable/parameter: a do not have a direct analogue in the balloon model, b is a parameter used
in previous balloon models, c are the set of independent variables needed to calculate the stHRF.

Ranges for damping and propagation velocity

The theory shows that calculation of spatiotemporal properties of the response requires two
parameters in addition to those present in the balloon model, for example. A priori constraints on
these parameters, the propagation velocity v; and temporal damping rate I', can be made by
comparisons with previous experimental work. This means that, although prior work does not
give precise values for these quantities, it does yield their approximate values and prevents them

from being treated as free parameters.

Firstly, as mentioned in the main text, pressure changes occur on scales of order the spacing of
0.75-4 mm between arterioles [10] in times of order hemodynamic transit time, t=1-4 s. Hence a

priori estimates of v; are in the order 1 mm s,



The temporal damping rate I" has two components, the average viscous damping and the

contribution from loss due to outflow, with

I“=l ﬁ+2 .

S24
1 (s24)

The first term in S24 is from the outflow condition. Using the physiological values in Table S1
this contribution lies in the range 0.25 - 3 s1. The second contribution involves D, which

parameterizes blood viscosity. Previous experimental work shows that [3]:

* Average artery Red blood cell velocity (RBV) is ~ 12 mm s
* The red blood cell velocity drop (ARBV) from artery to vein is around 6 mm s-1

* ARBV from artery to capillary is around 10 mm s'!

Now this viscous term occurs on average for a compartment so it will occur of the hemodynamic

transit time, T, so then the estimate for D/pris
D/ps~ (ARBV/RBV)/t

Therefore this term ranges from ~0.1 - 0.8 s'1, therefore the a priori estimate of I lies in the

range
02 s1<T <251 [S25]

Determination of non-linear model parameters
The concentration of hemoglobin in tissue is approximately 56 mmol m-3 [11], The model

specifies that the concentration of total hemoglobin is &. Therefore at rest,
Y&, =56 mmol m™, [S26]
and using the tabulated value for &, v is approximately 1.9 mmol kg1

On the ranges of pore pressure, P: Typical values between artery and vein which range from 8 -
13 kPa [12]. At rest, the average value of 10kPa, this is inserted into the constituent equation at

rest,



Py=c, &, [S27]
to find that c;~ 0.4 m° Pa kg-3.

Regarding the pressure coupling constant c;, the properties of the microvasculature are
considered and extended to the mean field. Firstly, the pressure coupling in the microscale, Cj, is
related to c1 by c1 = C1¢, where ¢ is the porosity. This shows that the pressure will couple to a
fraction of the total tissue volume and is approximately Vo. Secondly, the momentum (Eq. 3 of the

main text] is at rest,
CVP =-Dv, [528]

where the velocity terms, due to the boundary inflows/outflows, present in Eq. 3 of the main text
are absorbed to deal with the effective velocity v. This then provides estimates for the pressure

coupling in the microscale C1. To find a value for €y, one can consider the following properties:

*  The pressure drop from artery to vein is ~ 5300 Pa (40 mm Hg) [12], which is assumed

to occur over the order of artery to vein spacing ~1mm [10].

* Red Blood Cell velocity, is in the order of 10 mm s-1 [3], which is attributed to the

effective velocity v.

Using these arguments, and that D/pr ~ 1 s-1(see above) an approximate value for C; is 2x10-,
therefore c; is approximately 6x10-8. Furthermore the estimates for ¢; and c; again imply that v,

is of order mm s1.

Polynomial fitting of the expected central response

The estimation of the centerline for each subject was made by a polynomial fit to each subject,
where the fit was made by a nonlinear least squares fit (Figure S3). In all cases, the higher the
polynomial order n, the lower the residual error, at a price of higher degrees of freedom. The
value of n was chosen by optimizing the Akaike Information Criteria (AIC) [13]. The AIC penalizes
models (i.e. different n) with a higher complexity and rewards models with lower residual error.

The AIC was calculated by



AIC(n) = 2(n+1)+Nlog(oy), [S29]

where n is the degree of the polynomial, N is the total number of points fitted, and o, is the

standard deviation of the residual error of the fit for degree n.
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