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Supporting Text S1

Model neurons

We use the Wang-Buzski (WB) conductance-based model (ref. [86] in main text) to describe
each single excitatory and inhibitory neuron. The WB model is described by a single compart-
ment endowed with sodium and potassium currents. The membrane potential is given by:

C
dV

dt
= −IL − INa − IK + Iext + Irec

where C is the capacitance of the neuron, IL = gL(V − VL) is the leakage current, Iext is
an external driving current and Irec is due to recurrent interactions with other neurons in
the network (see later). Sodium and potassium currents are voltage-dependent and given by
INa = gNam

3
∞h(V − VNa) and IK = gKn

4(V − VK). The activation of the sodium current is
instantaneous:

m∞(V ) =
αm(V )

αm(V ) + βm(V )

Sodium current inactivation and potassium current activation evolve according to:

dx

dt
= Φ · (αx(V )(1− x)− βx(V )x)

where x = h, n and αx and βx(V ) are non-linear functions of the membrane potential given by:

αm(V ) =
0.1(V + 35)

1 + e−
V +35
10

βm(V ) = 4e−
V +60
18

αn(V ) =
0.03(V + 34)

1− e−
V +34
10

βn(V ) = 0.375e−
V +44
80

αh(V ) = 0.21e−
V +58
20

βh(V ) =
3

1 + e−
V +28
10

Other parameters are gNa = 35 mS/cm2, VNa = 55 mV, gK = 9 ms/cm2, VK = −90 mV,
gL = 0.1 mS/cm2, C = 1 µF/cm2 and φ = 5.

Model synapses

The synaptic current induced in a postsynaptic neuron by a single presynaptic action potential
is given by Ispike(t) = −gxsspike(t)(V −Vx), where V is the potential in the postsynaptic neuron
and Vx is the reversal potential of the synapse (for excitatory synapses VE = 0 mV, for inhibitory
synapses VI = −80 mV). The time-course of the postsynaptic conductance is described by:

sspike(t) ∝ (exp (−(t+ d− t∗)/τ1)− exp (−(t+ d− t∗)/τ2))
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for t > t∗, 0 otherwise, where t∗ is the time of the presynaptic spike, d is the latency, τ1 the
rise-time and τ2 the decay-time. The total recurrent current Irec(t) is the sum of time-dependent
contributions Ispike(t) from all the presynaptic spikes fired to time t. The normalization constant
of sspike(t) is chosen such as the peak value of sspike is equal to 1. For all simulations in the paper,
we take τ1 = 1 ms, τ2 = 3 ms and d = 0.5 ms. Thus, post-synaptic currents have a relatively
fast decay, corresponding to AMPA-like excitatory and GABAA-like inhibitory synapses. For
simplicity, we take only two possible peak conductances, gI = 90 µS/cm2 for inhibitory synapses
within an area and gE = 5 µS/cm2 for excitatory synapses within and between areas.

Parameters of the background noise

In addition to recurrent synaptic inputs, each neuron receives a noisy input, representing back-
ground spiking activity. It is modeled as an excitatory current having the same functional form
of a recurrent current induced by a Poisson spike train with firing rate fext. The peak con-
ductance of this noisy background input is gext. In our simulations, we take fext = 5 kHz,
and gext = gE = 5 µS/cm2. Each neuron is driven by statistically independent Poisson noise
realizations.

Phase response of the rate model

As previously throughly reported in the Supplementary Material of ref. [42] (in main text), the
firing rate of a single oscillating area (only local inhibitory coupling KI < 0 with delay D) can be
derived analytically assuming that: (i) the total input current Itot(t) = I +KIR(t−D) is below
threshold (i.e. negative) for a duration Tst > D; (ii) the delay D and the oscillation period T
fulfill the inequalities D < T − Tst < 2D. The conditions (i) and (ii) hold for sufficiently strong
local inhibition, and, specifically, for the value KI = −250 and the delay D = 0.1 adopted in the
main paper. Under these conditions, the limit cycle of the firing rate assumes then the following
analytic form (see Figure 2B in the main paper):
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R(t) = Rpeak·


e−t t ∈ [0, Tst]
e−t +KIe

D
[
e−t − e−Tst + e−t(t− Tst)

]
t ∈ [Tst, Tst +D]

e−t +KIe
D
[
e−t − e−Tst + e−t(t− Tst)

]
+K2

I e
2D
[
e−t − e−D−Tst + e−t(t− Tst −D + (t−Tst−D)2

2 )
]

t ∈ [Tst +D,T ]

where Rpeak is the peak amplitude of the periodic oscillation of the rate and depends linearly
on the level of the background current I. The oscillation period T and the sub-threshold time
can be determined numerically by solving the system of non-linear equations:

eT−Tst = 1 +KIe
D
(
1 + T − Tst −D − eT−Tst−D

)
eT = 1 +KIe

D(1− eT−Tst + T − Tst) +K2
I e

2D

(
1− eT−Tst−D + T − Tst −D +

(T − Tst −D)2

2

)
We define the phase relative to the oscillation as φ(t) = mod (t− t0, T ), where the time-shift t0
is chosen such as φ(ttpeak) = 0 in correspondence of the timings tpeak of oscillation peaks. Phases
are therefore, with this notation, bounded between 0 and 1. We use this convention throughout
all analytic developments for the sake of simplicity. In The results involving phases in the main
article are then translated back into the more usual angular range comprised between 0◦ and
360◦. The application of a pulse current δI = hδ(φ − φp) at a phase φp induces a phase-shift
δφ(φp) = hZ(φp) (see Figure S3B). The analytic expression for the Phase Response Curve (PRC)
Z(φ) can be derived from the knowledge of the limit cycle solution, and reads:

Z(φ) = Rpeak ·


0 φ ∈ [0, φst]

−eT (φ−1)
(
1 +KITe

D(1− φ− φD)
)

φ ∈ [φst, 1− φD]

−eT (φ−1) φ ∈ [1− φD, 1]

where φst = Tst
T and φD = D

T . The resulting PRC is therefore null over a very large interval of
phases, leading in this broad range to refractoriness toward perturbations. A plot of Z(φ) for
the parameters used in our study is reported in Figure 4D (main text).

Phase-locking in the rate model

As discussed in the main text, the time-evolution of the instantaneous phase shift ∆φ(t) between
two coupled areas can be described, in the weak coupling limit, by the equation:

d∆φ

dt
= Γ(∆φ)

The term Γ(∆φ) is a functional of the phase response and of the limit cycle waveform of the
uncoupled oscillating areas. In terms of the previously derived analytic expressions of Z(φ)
and of the rate oscillation limit cycle R(φ) (phase-reduced) for KE = 0, this functional can be
expressed as Γ(∆φ) = C(∆φ)− C(−∆φ), where:

C(∆φ) =

∫ 1

0
Z(φ)R(φ+ ∆φ−D)dφ
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Stable phase-lockings are therefore given by the zeroes of Γ with negative slope crossing. Analytic
expressions for the integral C(∆φ) have already been derived and published in the Supplemen-
tary Material of ref. [31] (in main text). We report here these expression again, in order to
make the presentation of results self-contained. To compute C(∆φ), six different intervals of
∆φ need to be considered separately. The result is:

C(∆φ) =



C00(φst, 1) + C10(φst, 1− φD) ∆φ ∈ [φD − φst, φst + φD − 1]

C00(φst, 1) + C10(φst, 1− φD) + C01(φst + φD −∆φ, 1) ∆φ ∈ [φst + φD − 1, φst + 2φD − 1]

C00(φst, 1) + C10(φst, 1− φD) + C01(φst + φD −∆φ, 1)
+C11(φst + φD −∆φ, 1− φD) + C02(φst + 2φD −∆φ, 1) ∆φ ∈ [φst + 2φD − 1, φD]

C00(φst, 1 + φD −∆φ) + eTC00(φst + φD −∆φ, 1)
+C10(φst, 1− φD) + C01(φst, 1 + φD −∆φ)
+C11(φst, 1− φD) + C02(φst + 2φD −∆φ, 1 + φD −∆φ) ∆φ ∈ [φD, φst − 1 + 3φD]

C00(φst, 1 + φD −∆φ) + eTC00(φst + φD −∆φ, 1)
+C10(φst, 1− φD) + C01(φst, 1 + φD −∆φ)
+C11(φst, 1− φD) + C02(φst + 2φD −∆φ, 1 + φD −∆φ)
+C12(φst + 2φD −∆φ, 1− φD) ∆φ ∈ [φst − 1 + 3φD, 2φD]

C00(φst, 1 + φD −∆φ) + eTC00(φst + φD −∆φ, 1)
+C10(φst, 1 + φD −∆φ) + eTC10(1 + φD −∆φ, 1− φD)
+C01(φst, 1 + φD −∆φ) + C11(φst, 1 + φD −∆φ)
+C02(φst, 1 + φD −∆φ) + C12(φst, 1 + φD −∆φ) ∆φ > 2φD
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where

C00(a, b) = −(b− a)Te−T (1−∆φ+φD)

C10(a, b) = KIe
T (2φD−1−∆φ)

[
T (x+ φD − 1)2

2

]b
a

C01(a, b) = −KIe
D−T

[
T (b− a)eT (φD−∆φ) − e−Tst(ebT − eaT ) + eT (φD−∆φ)

[
T (x+ ∆φ− φD − φst)2

2

]b
a

]
C02(a, b) = −K2

I e
2D−T

[
(b− a)eT (φD−∆φ) − e−D−T1(ebT − eaT )+

+eT (φD−∆φ)

[
T (x+ ∆φ− 2φD − φst)2

2
+
T (x+ ∆φ− 2φD − φst)3

6

]b
a

]

C11(a, b) = K2
I e

2D−T
[
eT (φD−∆φ)

(
(bT )2

2
− (aT )2

2
+ T (D − T )(b− a)

)
− (1)

−e−Tst
[
(xT − 1)exT + (D − T )exT

]b
a

+

+eT (φD−∆φ)

[
(xT +D − T )3

3
+ T (x+ ∆φ− 2φD − φst)

(xT +D − T )2

2

]b
a

]

C12(a, b) = K3
I e

3D−T
[
eT (φD−∆φ)

(
(bT )2

2
− (aT )2

2
+ T (D − T )(b− a)

)
− (2)

−e−D−Tst
[
(xT − 1)exT + (D − T )exT

]b
a

+

+eT (φD−∆φ)

[
(xT +D − T )3

3
+ T (1 + ∆φ− 3φD − φst)

(xT +D − T )2

2
+

(xT +D − T )4

8
+

+T (1 + ∆φ− 3φD − φst)
(xT +D − T )3

3
+ T (1 + ∆φ− 3φD − φst)2 (xT +D − T )2

4

]b
a

]

where [f(x)]ba = f(b)− f(a). A plot of Γ(∆φ) for the parameters used in our study is reported
in Figure 4B (main text).


